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I

INTRODUCTION

Of the three primary computational chemistry tools, two (molecular me-
chanics and semiempirical molecular orbital theory) rely on embedded em-
pirical parameters, while the third (ab initio quantum chemistry) is potentially
capable of reproducing experiment without such parameters. Since the first
two methods depend on the availability of reliable experimental data, they are
best applied in situations requiring an interpolation between known experi-
mental quantities. The quality of the fundamental parameters on which these
models are based depends on the quality and quantity of experimental data.

Within the realm of ab initio methods one should distinguish two dif-
ferent approaches. In the “calibrated” approach, favored by Pople and co-
workers, the full exact equations of the ab initio method are used without
approximation. The basis set is fixed in a semiempirical way, however, by
calibrating calculations on a variety of molecules. The error in any new ap-
plication of the method is estimated based on the average error obtained,
compared with experimental data, on the calibrating molecules. This is dif-
ferent in philosophy from the “converged” approach favored by chemical phys-
icists interested in small molecules. In the latter approach, a sequence of cal-
culations with improving basis sets is done on one molecule until convergence
is reached. The error in the calculation is estimated from the sensitivity of the
result to further refinements in the basis set. Clearly the calibrated method is
the only one that is practical for routine use in computational chemistry. Con-
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2 Basis Sets for Ab Initio Orbital Calculations

verged ab rmitio calculations are limited to a few small molecules and normally
are done only when developing and testing new methods.

Ab initio theory more easily lends itself to situations in which little or
no experimental information is available, i.e., in new areas of chemistry. How-
ever, to the extent that the ab initio approach is independent of experimental
data, it finds itself at a disadvantage relative to other methods in the areas of
computational speed and accuracy. Viewed from a broader perspective, each
methodology is seen to have its own particular strengths and weaknesses and
an intelligent use of these tools, therefore, implies some understanding of their
inherent limitations.

Since the overwhelming majority of ab initio calculations ultimately ex-
pand a wavefunction in terms of Gaussian basis functions, this review is an
attempt to provide the nonexpert with rough guidelines for selecting from
among the many basis sets in the chemistry literature. In conjunction with the
assumed form for the many-electron wavefunction, the choice of basis set
represents one of the principal adjustable parameters in any ab initio calcu-
lation. A wrong choice can render the results of even large and time-consuming
calculations meaningless. If competitive, fully numerical methods were sud-
denly to appear, no doubt the quantum chemistry field would see a rapid
abandonment of the basis set approach to building wavefunctions. Although
research continues along those lines,’ no general numerical method for poly-
atomic molecules has appeared. Meanwhile, in spite of the fact that the topic
of basis sets is often considered highly technical, at least a cursory understand-
ing is essential to workers who must apply ab iuitio methods to questions of
chemical interest.

The sheer number of basis sets, compounded by the ever-increasing num-
ber of properties that might be desired, makes the choice a nontrivial one. It
is especially difficult for chemists who are primarily interested in molecular
mechanics or semiempirical methods, but who find themselves either wanting
to perform ab initio calculations or having to critique a colleague’s use of ab
initio methods. Even experts in the field find it difficult to keep up with the
literature as the proliferation of new basis sets continues unabated.

The three primary computational chemistry methodologies are not mu-
tually exclusive in their range of applicability. For example, all three are ca-
pable of predicting the structure of molecules and all three provide relative
conformational energies. This should not be misconstrued to mean that they
behave identically. For example, molecular mechanics? can often reproduce
bond lengths to an accuracy of £0.004 A in molecules similar to those used
in parameterizing the force field, while minimal level Hartree—Fock ab initio
methods require significantly more computer resources to achieve results that
may be an order of magnitude less accurate. Of course, more accurate ab initio
treatments can match the accuracy of molecular mechanics, but at an increased
cost in computer time. In fact, some molecular mechanics force fields are now
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being parameterized with ab initio results because of the dearth of experimental
data for particular classes of compounds.

Similarly, semiempirical methods, such as MNDO,* which are para-
meterized to reproduce heats of formation, have been reported to yield AH¢'s
with an accuracy of +9 kcal/mol® for a selected set of molecules. Simple ab
initio calculations may be more than a factor of two less accurate and 5-10
times slower. Again, in most cases it is possible to perform more elaborate ab
initio calculations that can reduce this error to =2 kcal/mol or less.

Nevertheless, the combination of generality and flexibility makes ab initio
methods a powerful complement to experimental measurements as well as to
other computational techniques for small to intermediate size systems. Ab itio
methods can, in principle, be applied to any geometry on the ground state or
any excited state potential energy surface. Furthermore, with modern computer
programs the “quality” of the wavefunction can be easily improved, in contrast
to molecular force field or semiempirical methods that are comparatively dif-
ficult for the user to improve systematically.

In broad terms, molecular mechanics seeks to provide information about
molecular structure and relative energies. In addition, some programs can pro-
vide vibrational normal mode information. Several commonly used semiem-
pirical methods are parameterized on experimental heats of formation at 25°C
and other properties and have been found to give reasonable geometries (with
accuracies in the =0.02 A range) and selected one-electron properties, such
as dipole moments (with accuracies of =0.4 D).

Even though molecular mechanics and semiempirical methods are ca-
pable of describing a great many molecular properties, and more are being
added every year, certain properties are beyond the scope of either approach.
In such cases ab initio methods may offer the only theoretical model capable
of attacking the problem. For example, neither method can accurately treat
the manifold of valence and Rydberg excited states of linear polyenes. Nor
can they handle the hyperfine spin properties of first- or second-row elements.

The most recent reviews of basis set technology were written three or
more years ago.>~® Since then several new basis sets have appeared in the
theoretical literature aimed at further minimizing the computational expense
of ab initio work while still maintaining an acceptable level of agreement with
experiment. The computer time required for some parts of an ab initio cal-
culation is so strongly dependent on the number of basis functions that rela-
tively minor changes in the basis can render a calculation intractable. At the
Hartree—Fock level the numerous electron—electron repulsion integrals, which
are necessary to solve the SCF equations, increase as the fourth power of the
number of Gaussian functions. Commonly used post-Hartree—Fock methods,
which strive to improve the wave function by correlating the motions of the
electrons, vary in their computational expense anywhere from a modest #° to
an imposing n!, where # is the number of basis functions.
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SOME TERMINOLOGY

Gaussian Compared to Exponential
Functions

The use of Cartesian Gaussian-type orbitals (GTOs) in ab initio work
may come as a surprise to anyone who recalls the functional form of the
hydrogen atom orbitals, ¥nydrogen ~ €xp( — 7). Cartesian GTO’s have the form:

laym_n

Xcro = Nx'y"z" exp(—{r?)

where N is a normalization constant, { is a constant called the “orbital ex-
ponent,” and distances are measured with respect to the position of the Gaus-
sian in three-dimensional space. Customarily one defines L = [ + m + n,
and refers to L = O functions as “s” functions, L = 1 as “p” functions, L =
2 as “d,” etc. A Gaussian function clearly has the wrong behavior near the
origin (zero slope instead of a cusp) and at large 7, i.e., exp(—r?) drop-off
instead of the slower exp(—7). Nodeless Slater-type orbitals (STOs)® of the
form

Xsto = Nr' ™1 exp(—{r)Yin(0,0)

where Y, is the usual spherical harmonic, would seem to be a much better
match for the hydrogenic orbitals and, in fact, are still the functions of choice
in atomic or diatomic calculations.?® Although much has been written about
the intrinsic deficiencies of Gaussians relative to exponential functions, the
reason for adopting the former over the latter was purely pragmatic. Boys!?
first advocated the use of Gaussians in polyatomic molecules because they
made the four-center, two-electron integrals relatively easy to compute. Al-
though three to four times as many s- and p-type Gaussians might be needed
on first-row elements B—F, compared to exponential functions, computer pro-
grams to handle Gaussians were relatively easy to write and, more importantly,
they could be made fast enough to more than offset the larger number of
functions. The advantages enjoyed by exponential functions is even less for
functions with higher L values, Here a single STO is worth less than two GTOs.
Utilization of concepts developed in the 1960s, which will be described in the
following section, further diminishes the advantage of exponential functions
over Gaussians,

Contracted Gaussians

The term ‘“‘atomic orbital” (AO) often appears in the early quantum
chemistry literature without the benefit of a precise definition. The expression
was loosely used in the context of combining functions derived from the free
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atom in such a way as to construct an approximation to the molecular orbital,
i.e., the linear combination of atomic orbitals (LCAQ) approximation. STOs
were introduced as an approximation to atomic orbitals. In this review we
shall use the term ‘“atomic orbital” to mean a Hartree~Fock (HF) orbital
obtained from an atomic calculation. As a consequence of the AO basis set
concept, a “minimal” basis set would contain only those functions whose
counterparts were occupied in the atoms from which the molecule was con-
structed. For example, a minimal basis on methane would consist of 1s, 2s,
and 2p functions for carbon and four 1s functions, one for each hydrogen.

Work by Frost and co-workers'? in the mid 1960s abandoned the idea
of AO-based functions to arrive at an even more compact basis set. They
suggested the use of s-type Gaussians that were not fixed at the atomic centers,
but could “float” in space so as to optimally represent each localized pair of
electrons. Because only one function was needed for each pair of electrons,
the basis sets used in “floating spherical Gaussian” (FSGQO) scheme were often
referred to as “‘subminimal.” Extensions of Frost’s idea to ellipsoidal
Gaussians'® of the form

xecto = N exp(—{ox? + By* + vz?})

where N is a normalization constant and a, B, and vy are now permitted to
assume different values, improved the quality of the wave function without
increasing the number of basis functions. However, the idea of using a single
Gaussian, whether spherical or ellipsoidal, to represent an electron pair has
fallen out of favor as ab initio methods have been pushed to greater accuracy.

A compromise between the AQ basis set approach and floating spherical
Gaussian approaches was proposed by Whitten'* in 1966. He suggested the
use of “Gaussian lobe”’ functions, which were s-type Gaussians situated about
the nucleus in such a way as to mimic functions of higher angular momentum.
As with floating spherical Gaussians, the use of Gaussian lobe functions has
greatly decreased because it was difficult to systematically improve the basis
set. Problems with the loss of numerical precision appeared as higher angular
momentum functions, such as f- and g-type functions, were approximated by
combinations of lobe functions. At the same time, very efficient programs that
could handle Cartesian Gaussians up through g functions began to appear.
Almost all ab initio calculations are now done with atom-centered Cartesian
Gaussians.

By the early 1960s, as more experience was gained in performing ab
initio calculations, it was realized that fixed linear combinations of Gaussians,
known as “contracted” functions,’:!® could be used in place of the individual,
or “primitive,” functions with an acceptably small decrease in quality of the
wave function. This development was based on the recognition that most of
the s-type Gaussian primitives were present in the basis set to help describe
the energetically important, inner shell, region of space near the nucleus. Since
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the atomic inner shells do not experience much change when a molecule is
formed, it was possible to determine the coefficients at the atomic level and
simply transfer them to the molecular situation.

The shape of the inner portion of the 2s orbital is largely determined by
the nuclear potential and by orthogonality constraints imposed by the 1s func-
tion, Therefore, it will also have contraction coefficients for the primitive Gaus-
sians in the inner core region (large orbital exponents), which are transferable
between the free atom and molecules. The approximation imposed by deriving
contraction coefficients for inner shell type Gaussians from atomic calculations
is adequate as long as the 1s or “core” electrons do not actively participate
in the chemical process under examination. Conveniently, this is the case for
the overwhelming majority of uses to which ab initio calculations are now
being put.

Even p functions, which have a node at the nucleus, have their shapes
in the energetically important small r region largely determined by the partial
shielding of the 1s orbital. As a consequence, the coefficients for tight p func-
tions (those with large orbital exponents) change very little when the atom
finds itself part of a molecule. Thus, although contraction coefficients have
been derived in a wide variety of ways, most are obtained from free atom
calculations. The implicit assumption is that the coefficients determined for a
particular atom can be used in any molecule containing that atom.

In fact, in a contraction scheme first proposed by Raffenetti,!” the min-
imal basis set functions are taken to be the actual HF AQs, obtained by. first
performing uncontracted calculations on the free atoms. For a variety of mol-
ecules, it has been demonstrated that these functions overlap the space of the
“optimal’’*® molecular minimal basis set to better than 0.99, thus, empirically
justifying the assumption mentioned in the preceding paragraph.

The “art” in designing basis sets comes in the treatment of the valence
regions of space, where molecular formation causes large distortions from a
free atom environment. Care must be taken not to impair the flexibility of the
basis set in this critical region, while simultaneously keeping the total number
of functions as small as possible. The next step up from minimal atomic orbital
basis sets is, then, to split the description of the 2s and 2p orbitals, which is
handled by a single 2s and set of 2p orbitals in the minimal basis set approx-
imation, into two functions each. This results in what is known as a “split
valence” (SV) basis. For investigations that do not require high accuracy, SV
basis sets are probably the most frequently used. A comparison of typical
results from various SV basis sets and experiment will be discussed
subsequently.

Slightly more flexible than the split valence basis set is what is known
as the “double zeta” (DZ) basis. For first-row atoms (Li~Ne) a DZ basis will
have four functions of s symmetry (compared to only three for an SV basis)
and two functions of p type. The label “double zeta” derives from the time
when most calculations were being done on diatomics with STO basis sets.
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The exponents were often denoted by the Greek letter zeta. Thus, a “‘single-
zeta” basis set would have a single exponential function representing each
atomic orbital. A double-zeta basis would have two exponential functions for
each AQ. The terminology has carried over into Gaussians.

Polarization Functions

Basis functions with higher L values may also be added to the expansion
set to better account for the distortion from atomic symmetry that results from
placing the atom in a molecular environment. These functions usually go by
the name “polarization” functions because they permit the polarization of the
AOs. A double-zeta basis, when augmented with such functions, is called a
“double-zeta plus polarization” (DZP) basis set.

This style of jargon can be (and has been) carried further, giving rise to
phrases such as “triple-zeta plus polarization” (TZP) or “triple-zeta plus dou-
ble polarization” (TZDP). However, the terminology for basis sets bevond the
DZP level rapidly becomes so unwieldy that a kind of shorthand is commonly
invoked. The uncontracted basis set is given in parentheses, followed by the
contracted basis in square brackets. If the molecules of interest contain atoms
from different periods of the periodic table, their basis functions are separated
by a slash. For example, a double-zeta contracted basis set on water, which
likewise contained p functions on hydrogen and d functions on oxygen, might
be denoted as (10s,5p,1d/5s,1p) — [4s,2p,1d/2s,1p], where the original Gaus-
sian primitive basis set contained 10 s functions and 5 p functions on oxygen
and 3 s functions on hydrogen. Some additional textual information about the
manner in which the primitives were contracted is also necessary before the
basis set can be completely specified. Pople and co-workers use a different
notation, which is slightly more informative. For example, their 6-31G* basis
is a SVP basis (10s,4p,1d) — [3s,2p,1d] with six Gaussians combined to form
the first s contraction, three combined to form the second s combination, and
the third s being an uncontracted primitive. Similarly, three primitives are
combined to form the first contracted p, while the second is uncontracted.

Another subtlety concerns the set of higher L Cartesian Gaussians, i.e.,
d, f, and g functions, There are six Cartesian d’s with ! + m + »n = 2. The
dxx + dy, + d., combination of these corresponds to a function of atomic s
symmetry. Sometimes this combination is included in calculations and some-
times it is omitted. When one compares literature results from various sources,
it is important to know whether the s component of the d’s was present. With
many commonly used basis sets the effect, even with only one d set, is not
negligible. When adding a set of d functions to the 6-31G basis,*?2° for ex-
ample, the difference in the SCF energy between keeping or omitting the s
component of the d set is on the order of 1 millihartree (0.6 kcal/mol) for each
first-row atom present in the molecule. Unfortunately, there is no standard
notation that tells whether the s component of the d’s has been kept. For
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example, the Pople basis sets 3-21G"*’ and 6-31G" both include the s com-
ponent while 6-311G* does not.

The replacement of the Gaussian primitive basis with a smaller number
of contracted basis functions drastically reduces the amount of storage required
to hold the two-electron repulsion integrals as well as the time required for
the self consistent field (SCF) and electron correlation portions of the calcu-
lation. However, the time required to compute the two-electron integrals, or
for that matter any set of integrals over the basis functions (e.g., gradient
integrals used in geometry optimizations), is not reduced by the use of con-
tracted functions.

Comparisons between STOs and contracted Gaussian basis sets in
water,?! copper,?? and other systems®*® showed comparable accuracies with
comparably sized basis sets.

Complete Sets

At this point the reader may be wondering where it all ends. In theory,
the answer is never. To construct a ‘“complete” basis set, capable of exactly
representing the Hartree—Fock wave function for any molecule, it would be
necessary to include an infinite number of functions of each symmetry type
(s,p,d,f, . ..). This is sometimes referred to as the “Hartree—Fock limit.” For
an in-depth examination of this issue the reader is referred to representative
work by McDowell** and Klahn,?* Although a rigorous examination of com-
pleteness is beyond the scope of the present treatment, it is helpful to consider
a more practical definition of completeness that allows for real world limi-
tations. We thus arrive at the notion of effectively complete basis sets.

A working definition of “effective completeness” might vary somewhat
depending on a2 person’s area of interest, but most people would agree that a
basis set capable of reproducing the Hartree—Fock limit energy to within 1
millihartree (1 hartree = 627.5 kcal/mol = 27.2 eV) along with other prop-
erties to within *+1% is nearly complete. To give one concrete example of
what it takes to achieve this level of accuracy, the SCF energy of CO with a
very large basis consisting of only s- and p-type functions is given in Table 1
as —112.717 hartree. Adding d functions until the d space is saturated lowers
the energy by 0.068 hartree. Higher L functions (f, g, etc.) add another 0.006
hartree for a final energy of — 112.791. So the effect of polarization functions
on the energy is quite large, even for small molecules. Other properties can be
equally affected. The SCF dipole moment of CO changes by nearly a factor
. of two (from 0.54 to 0.27 D) as higher L functions are added (but is still of
the wrong sign because of electron correlation effects).

The effects produced by such functions are even more dramatic when
correlated wave functions are used. The Hartree—Fock wavefunction for oxy-
gen makes use of s- and p-type functions only. However, at the configuration
interaction (CI) level, higher L functions can be used to correlate the motions
of the electrons. Table 1 shows how the CI energy and the isotropic hyperfine
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Table 1 Effects from Adding Higher L Functions at

the SCF and CI Levels of Theory®

E(SCF) p (D)
(s,p) limit -112.717 0.54
(s,p,d) limit -112.785 0.26
(s,p,d,f) limit -112.790 0.27
Numerical HF —-112.791 0.27

O atom

E(CI) Aiso (MHz)
(s,p) limit —74.935 -26
{s,p,d) limit -75.032 - 30
(s,p,d,f) limit -75.053 - 30
(s,p,d,f,g) limit —75.061 -31
Experimental —75.069 -345

4 Estimated limits based on large uncontracted even-tem-
pered Gaussian calculations. The Cl results for oxygen are
based on the estimated full Cl energy derived from large mul-
tireference single- and double-excitation calculations.

property, which is a measure of the unpaired spin density at the nucleus, con-
verge as a function of L.

Experience has shown that it is presently possible to effectively converge
basis sets for small molecules containing one to three first-row atoms. For
larger molecules, which embody the majority of chemistry, smaller sets must
be used. However, the accuracy from even these smaller sets is often sufficient
to answer questions of immediate chemical interest. The available accuracy
for every-sized molecular system will continue to improve as rapid advances
in computer hardware and software are realized. Thus, although the long-term
goal is to be able to compute quantities such as energy differences reliably to
within =+ 1 kcal/mol and bond lengths to £0.01 A, in the short term there are
problems faced by chemists where useful insights can be gained with more
approximate results.

In summary, nearly all ab initio calculations currently use contracted
Gaussian basis functions. Uncontracted sets have been relegated to investi-
gations seeking very high accuracy in small systems where it might be desirable
to retain as much flexibility as possible.?¢

The Basis Set Superposition Error

As ab initio calculations were pushed to greater accuracy and researchers
began tackling problems such as the weak van der Waals interaction between
rare gas atoms or the hydrogen bonding in water, it became apparent that the
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use of incomplete basis sets resulted in significant errors in computing potential
energy curves. The origin of the so-called “basis set superposition error” (BSSE)
comes from the tendency for electrons associated with an atom having a de-
ficient basis set to make use of basis functions on neighboring atoms to lower
their energy.

For example, each atom in a simple diatomic molecule, such as CO, may
experience two sources of energy lowering as they approach each other. Not
only will there be a lowering due to bond formation, but an artificial lowering
may arise as a result of an improved description of each atom. Even in the
absence of the other nucleus and its electrons, the energy of either carbon or
oxygen by itself may show a decrease when its own basis is augmented by the
collection of basis functions associated with the other center.

Several schemes have been proposed for estimating the BSSE. The most
widely used is the counterpoise method,?” which defines the BSSE for a dimer
as the sum over both monomers of {E(monomer in monomer basis) —
E(monomer in full dimer basis)}. Some authors caution against allowing the
electrons on monomer A to utilize the function space corresponding to the
occupied orbitals on monomer B.?82? More recently this controversy seems
to have been settled in favor of the full counterpoise correction.?®* Although
this effect causes severe problems for studies involving small energy changes,
most computed one-electron properties, such as dipole moments, do not appear
to be affected by it.*?

CHOOSING A BASIS SET

In early ab initio programs specifying the basis set was a laborious and
error-prone task. The user was required to punch several dozen floating point
numbers into specific columns of the input deck without a single typing error.
With current programs (e.g., GAUSSIAN,** HONDQO,3* and GAMESS??) the
user may select from among a wide variety of internally defined basis sets by
simply specifying the appropriate keyword (usually the basis set name). While
this represents a significant step forward in making the programs easier to use,
it is still not ideal. Rather than choosing from among alternatives like “STO-
3G,” “3-21G,” and “DZP,” which assume some familiarity with the jargon
surrounding basis sets, most users would prefer to simply indicate the prop-
erties they want and the desired accuracy in the final answers. Unfortunately,
theory is still unable to predict the accuracy of a given calculation on purely
formalistic grounds. The best that can currently be offered is to calibrate the
method (i.e., basis set and level of correlation recovery) against experiment or
numerical Hartree—Fock methods and hope that the molecule of interest be-
haves similarly to the calibration set. Some of the difficulties in a priori error
estimates are discussed in the recent work of Feller et al.>® on small molecules.
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Molecular Geometries

The most widely calibrated basis sets for general purpose use are those
of Pople and co-workers, which range from the small STO-3G minimal basis
all the way up to basis sets with extra diffuse functions and multiple sets of
higher L functions. Besides being widely tested, these basis sets offer the com-
putational advantage that, when used with computer programs that exploit
their features, the calculation of the two-electron and first derivative integrals
is faster than for most other basis sets because exponents are shared between
s and p functions. Tavouktsoglou and Huzinaga®” developed a basis similar
to the STO-3G basis but, instead of determining the contraction coefficients
by a least-squares fit to STOs, they used the atomic SCF coefficients.

Table 2 provides an indication of how well the Pople-style basis sets and
some of the most widely used non-Pople basis sets succeed at predicting mo-
lecular geometries. For 2 more detailed examination of the Pople-style basis
sets, the user is directed to the book by Hehre et al.?® that provides a more
comprehensive analysis of the magnitude of errors to be expected from various
classes of compounds. It should be noted that comparisons of ab itio results
with experiment are complicated by the fact that most theoretical calculations
produce results appropriate to nonvibrating molecules at the true minimum
in the multidimensional stretching and bending potential surface. Low tem-
perature, gas phase experimental results are the closest comparable quantities,
but are often unavailable. Because of this, Hehre et al. warn that differences
between theoretical and experimental geometries of less than 0.01 A or 1° are
usually meaningless, except in very small molecules. Corrections to properties
such as the dipole moment due to vibrational motion are usually less than
10% and are often neglected unless a very precise determination is desired.

The STO-3G basis was initially developed for the elements H-Ne.?*
However, over the years it was expanded to cover Na—~Ar,*° P—Kr,*! and Rb-
Xe.*#43 A glance at Table 2 shows that, not surprisingly, the simple STO-3G
basis, which represents each atomic orbital by a single contracted function
designed to mimic a Slater-type orbital, shows the largest average error. Never-
theless, the average deviation in bond lengths (~0.03 A) and bond angles
(~2.1°) for first-row AH, compounds is quite good considering the crudeness
of the basis set. For slightly larger compounds, generically labeled AB,,H,,
the average errors are even smaller (=0.03 A, x29.

In general, this basis does better at reproducing multiple bonds between
first-row atoms than it does for single bonds. Carbon—carbon single bonds in
unstrained systems are an exception to this rule. Compensating errors allow
the $TO-3G Hartree-Fock C—C bond lengths in compounds such as ethane
and propane to come within 0.01 A of the experimental values.

In spite of the reasonably small average errors just mentioned, caution
must be exercised in the use of STO-3G basis. If a different list of compounds
different from those chosen for Table 2 were selected for the comparison, quite
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14  Basis Sets for Ab Initio Orbital Calculations

different results could have been obtained. For example, STO-3G underesti-
mates the bond length in Na, by 0.72 A and F, by 0.10 A, The STO-3G basis
1s quite inflexible and gives a poor representation of both the atom and the
molecule. Most of its apparent binding energy actually comes from a large
BSSE.

With very small basis sets it is important to know which types of com-
pounds and bonding situations are handled well and which are not. As basis
sets become larger and more flexible their performance not only becomes better
for “well-behaved” compounds, but also their ability to describe pathological
cases improves even more. Thus, not only do split valence basis sets, such as
3-21G***% and 3-21G'**¢ represent a marked improvement over STO-3G in
terms of their ability to predict molecular structure (see Table 2), the errors
for difficult to describe cases such as Na; and F, have dropped to 0.15 and
0.01 A, respectively. 3-21G* is an extension of the 3-21G basis to second
row elements (Na—Ar) and includes d polarization functions. In the case of 3-
21G all this improvement in accuracy was achieved without increasing the
number of Gaussian primitives relative to STO-3G, so the time required to
compute the two-electron integrals has remained essentially the same.

Other split valence basis sets, such as the 4-31G, defined for first-*” and
second-row elements,*® 5-31G, 6-31G,*’ and 4-21G5° basis, differ only in the
number of primitives used in expanding the inner shell and first contracted
valence functions (2s and 2p). In particular, the 4-21G basis of Boggs and co-
workers yields geometries that are often indistinguishable from the 3-21G
results.

Because the error in ab initio bond lengths and angles tends to be sys-
tematic, it is possible to correct the computed geometrical parameters empir-
ically. This procedure works best when applied to basis sets of at least split
valence quality, since minimal basis set results are more erratic.

Attempts to improve the STO-3G wave function by introducing corre-
lation recovery does not result in an overall improvement in the agreement
with experiment. Since STO-3G errors are fairly evenly distributed, some pos-
itive and some negative, the introduction of correlation, which tends to uni-
formly lengthen bonds, may improve some but worsen others. For example,
an STO-3G full CI improves the bond length in H; (from 0.71 to 0.74 A where
the experimental value is 0.74 A), while the same treatment worsens the bond
length in CO (from 1.15 to 1.19 A where the experimental value is 1.13 A).

With larger split valence polarization (SVP) basis sets, such as the 6-
31G*, the introduction of correlation recovery via Meller~Plesset second- or
fourth-order perturbation theory (MP2 or MP4) reduces the average error in
bond lengths. Basis sets with even greater flexibility in the valence region can
be constructed by allowing more Gaussian primitives to remain uncontracted
and including polarization functions on both hydrogen and nonhydrogen
atoms. One such example is the 6-311G**5! basis, which was developed by
optimizing Gaussian exponents and contraction coefficients at the MP2 level
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with polarization functions on both hydrogen and first-row atoms. As seen in
Table 2, without correlation recovery the overall agreement with experiment
is worse for A/B,,H, compounds at the 6-31G* level than at the 3-21G level.
As the Hartree—Fock limit is approached, most bond lengths are found to be
too short. After incorporation of electron correlation effects, via perturbation
theory or CI, most bond lengths tend to be closer to experiment, but somewhat
too long, Therefore, efforts to try to improve split valence geometries by adding
more basis functions, but keeping the simplicity of the HF wave function, are
often misdirected.

Again, it is important to emphasize that in the preceding discussions we
were dealing with average deviations from experiment. For any one particular
molecule and any given sequence of wave functions the findings may be far
different, as can be seen in the following example. The errors (ARcn, ARcn
in A) for the HCN molecule along the sequence (HF/STO-3G: 0.000, —0.005),
(HF/3-21G: 0.016, 0.015), (HF/6-31G*: 0.020, 0.006), (MP2/6-31G*:
—0.024, 0.005), (HF/6-311G**: 0.026, 0.007), (MP4/6-311G**: -0.031,
0.001), (MP3/6-311G**: 0.007, 0.001) start off low, rise steadily, and finally
begin to fall only after quite large basis sets and sophisticated wave functions
are employed. Since the last of these calculations consumes orders of magnitude
more computer time than the initial STO-3G HF calculation, it might be con-
cluded that, at least for HCN, one is better stopping with very simple theory.
However, a slightly different sequence of wave functions (HF/4-31G, HF/6-
31G**, MP3/6-31G**, MP3/6-311G**) listed in the book of Hehre et al.
shows an almost monotonic improvement in AR with level of theory and would
lead one to exactly the opposite conclusion concerning the effectiveness of
more elaborate calculations. The conclusion to be drawn is that, on average,
when larger basis sets are used in conjunction with correlation recovery meth-
ods (Cl, perturbation theory, etc.), the overall agreement with experiment
1Mproves.

The data for other basis sets is far less complete. The Dunning—Hay’?
(9s,5p) — [3s,2p] split valence contraction provides about the same average
error in AH,, geometry parameters as the Pople-style 3-21G basis. Similarly,
Table 2 shows that the MIDI split valence basis of Huzinaga and co-workers>?
performs at about the same level as the 3-21G basis. The Dunning DZP basis,**
which is slightly larger than the 6-31G* Pople basis, yields errors of the same
order of magnitude. It would appear that, to the extent comparison data are
available, the commonly used split valence or split valence + polarization
basis sets all provide comparable levels of agreement with experimental ge-
ometry parameters. :

Energy Differences

While an ab initio calculation can yield the total energy of a molecular
system, chemists are ordinarily more interested in relative energies such as
rotational barriers, conformational energy differences, or heats of reaction. It
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is, therefore, not necessary that a computed potential energy surface exactly
match the “real” surface. All that is desired is a surface that would parallel
the real surface to within some acceptable margin of error. The remarkable
performance of the simple STO-3G basis in predicting molecular structure has
been commented on previously. In some sense, the fact that the STO-3G re-
stricted Hartree—Fock energy for a carbon atom is 406 kcal/mol higher than
the exact energy is irrelevant. Some of this energy (~335 kcal/mol) is associated
with the core electrons, which remain largely unaffected by changes in ge-
ometry along the potential surface. Because of this, semiempirical techniques
and ab initio methods using effective core potentials can get away with ignoring
the core completely. But the bulk of the STO-3G energy error is tied up with
the (2s,2p) valence electrons. Perhaps the only advantage to be gained by
employing methods capable of yielding a large fraction of the total energy is
that there is less margin for error. The crucial question for people doing ge-
ometry optimizations is whether the STO-3G surface mimics the real surface
sufficiently well in the vicinity of equilibrium structures that the resulting struc-
tural parameters are close to their experimental values.

Our discussion of the performance of various basis sets and methodol-
ogies in predicting energy differences will begin with the region of the potential
energy surface near an equilibrium structure. Since we have already discussed
the accuracy of optimal geometries, we can proceed to ask questions about
the curvature of the surface at the minimum. The force constants, 3*V/ag.dg;,
are required for computing the vibrational modes of a molecule within the
harmonic approximation. As in the case of molecular geometries, most of the
calibration of basis sets with regard to normal mode analysis has been done
by Pople and co-workers.

Unlike the situation with optimal geometries, the STO-3G minimal basis
drastically overestimates vibrational frequencies in small molecules. The 30%
deviation for CO, 2825 cm~?! compared to 2,170 cm~! (experimental), is
typical. Fortunately, the slightly larger 3-21G split valence set does much better,
with most frequencies being overestimated by 10—15%.%® Therefore, it is a
common practice to apply an empirically determined correction factor of ~0.9
when comparing Hartree—Fock frequencies with experiment. Enlarging the
basis set by introducing polarization functions, but remaining at the Hartree—
Fock level, does not produce any improvement. However, when correlation
recovery is introduced, as with MP2, the error drops almost in half,*¢ even
though computed frequencies are still larger than experiment.

The ability to obtain the complete set of vibrational modes for large
polyatomic systems is of considerable importance. Experimentally this infor-
mation is very difficult to determine and, once available, it becomes possible
to compute thermodynamics quantities such as absolute entropies. Where nec-
essary, improvements on the harmonic approximation have been computed
by introducing cubic and quartic terms in studies of a variety of organic
molecules.®”
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Looking more globally at the potential surface, we encounter phenomena
such as rotational barriers and inversion barriers. The barriers to rotation in
ethane and many other compounds are described well by any of the basis sets
so far considered (STO-3G, 3-21G, 6-31G*), even at the HF level. However,
when the barriers are small, as in the case of methanol (~1.1 kcal/mol), the
HF method tends to overestimate AE,...

Inversion barriers, such as that found in ammonia, seem to require basis
sets of at least 6-31G* quality or better. STO-3G barriers tend to be too large,
often by a factor of two, whereas 3-21G barriers are too low. Once again, the
performance of the minimal basis proves to be very irregular. If used in a
carefully calibrated situation, it can produce results thar are as good as cal-
culations requiring orders of magnitude more computer time. But in the ab-
sence of demonstrated reliability, it cannot be trusted to provide any more
than a qualitative indication of the answer.

Other global properties include considerations of energy differences
across the entire potential energy surface. This includes bond breaking pro-
cesses, heats of reaction, and the energies of transition states. Ab fnitio quantum
chemistry has long sought to provide thermochemical data to an accuracy that
is competitive with experiment. Although the accuracy of experimental data
is sometimes hard to determine, it is approximately +1 kcal/mol. Some
authors®® have recently suggested that this may be overly optimistic. None-
theless, something on the order of +1 kcal/mol is a reasonable goal for theo-
retical calculations, and we shall examine how well various basis sets approach
it.

Table 3 shows the relative energies for four stationary points on the CO»
+ H — CO + OH potential energy surface. The reverse reaction is believed
to be a major sink for carbon monoxide in the atmosphere. This reaction was
chosen because the small size of the system allowed elaborate calculations to
be performed. The only experimental piece of evidence regarding the reaction
is the AH,, which is 24 kcal/mol at 0°K. The experimental zero point vibrational
contribution to AH is ~1 kcal/mol. Subtracting it will leave a target value of
23 kcal/mol for the energy differences between the molecules at their equilib-
rium geometries.

Hartree—Fock limit energies place the AE, at 8 kcal/mol, but still en-
dothermic. STO-3G makes a 41.7 kcal/mol error relative to the HF limit,
finding the reactants higher in energy than the products. 3-21G does better at
AE, = —3.1 kcal/mol and, finally, 6-31G** is within 2 kcal/mol of the HF
limit. The agreement with experiment is typical of what is found in general.
HF limit bond dissociation energies are often in error by 20—40 kcal/mol.

Second order Meoller—Plesset perturbation theory, MP2, overestimates
the effects of electron correlation by an amount that increases with the size of
the basis (4 kcal/mol overestimate with STO-3G, 9 kcal/mol with 3-21G, and
11 kcal/mol with 6-31G**). Fourth-order perturbation, MP4, showed a much
smaller error. The ‘“exact” values are represented by the full CI entries under
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Table 3 Energy Differences (in kcal/mol) at Four Stationary Points on the CO, +
H-—- CO + OH Potential Surface’

CO, +H CO + OH OCOH (81)) OC--OH (TS)*

STO-3G
SCF 0.0 -34.1 —-35.2 —14.4
MP2 0.0 -0.3 -2.4 11.5
MP4 0.0 -1.8
Full CI 0.0 -4.3 -13.6 6.3
3-21G7
SCF 0.0 -3.1 -1.1 13.9
MP2 0.0 29.9 13.7 31.9
Estimated full CI 0.0 20.9 -7.7 24.5
6-31G** ¢
SCF 0.0 5.8 2.4 27.1
SD-CI 0.0 3.5
Estimated SDQ-CIf 0.0 16.9
MP2 0.0 31.8 4.4 34.3
MP4 0.0 24.0
Estimated full ClI 0.0 20.8 14.3 28.9
(25.2)¢
Estimated HF limit”
SCF 0.0 7.6

“ The difference is defined as E(arbitrary point) — E{CO: + H). Thus, a positive value means
that CO, + H is lower in energy. Experimentally, the zero point vibrationally corrected AE for
the reaction is 23 kcal/mol. Geometries were taken from 6-31G** MCSCF optimized structures.

b Stable intermediate (trans form).

¢ Transition state (trans form).

4 Full Cls could not be carried out for all four geometries with the 3-21G basis. Therefore, very
large multireference Cls were performed.

¢ As with the 3-21G basis, full Cls could not be performed with the 6-31G** basis. Large
multireference Cls, containing up to 345 configurations in the reference space and 398,533 con-
figurations in the variational part of the calculation, were performed.

f An estimate for the contribution of quadruple excitations to the energy was made using the
formula AEq = AEsp(1 — ¢o?) where AEgp is the singles and doubles energy lowering and co
is the coefficient of the Hartree~Fock configuration in the Cl wave function.

2 Energy difference based on the supermolecule approach. For the $STO-3G and 3-21G basis
sets, a full CI could actually be performed on CO and OH fragments. With the 6-31G** basis a
full Cl was too large to do. The 4.4 kcal/mol difference is a measure of the size consistency
uncertainty in the estimated MR SDQ-Cls on which the 6-31G** entries are based.

» The estimated complete basis set limit is based on numerical Hartree—Fock calculations for
CO and OH and a very extended basis calculation on CO; at 2.192 bohr, which gave an SCF
energy of — 187.7244 hartree.



Choosing a Basis Set 19

each basis. Actual full CI calculations could be performed only for the STO-
3G basis and the CO and OH molecules in the 3-21G basis. The remaining
“Full CI” entries were estimated from large multireference single and double
excitation Cls (MR SD-CIs). The effects of quadruple excitations were esti-
mated through the use of a multireference analog of the so-called “Davidson”
or “size-consistency”’ correction {labeled MR SD(Q)-CI],’® but the magnitude
of the correction was small. The largest variational Cl involved nearly 400,000
configurations and had a reference space of 345 configurations.

An interesting sidelight of the results shown in Table 3 has to do with
the relative merits of configuration interaction compared to perturbation the-
ory as a method for computing energy differences across a potential surface.
One desirable characteristic of Meller—Plesset perturbation theory is that it is
“size consistent,” i.e., the energy of n infinitely separated systems is just # times
the energy of a single system. Although the HF wave function is size consistent,
the single- and double-excitation CI (SD-CI) wave function is not. Moreover,
as the size of system grows the magnitude of the size consistency error asso-
ciated with SD-CI also grows.

In fact, the SD-CI AE, with the 6-31G** basis is even smaller than the
HF result (a 20 kcal/mol error), while the MP2 result is only 11 kcal/mol in
error (but in the other direction). However, this comparison is somewhat ar-
tificial, since few people would stop with the raw SD-CI energy difference. At
minimum, the “size consistency” correction for the effect of quadruple exci-
tations is usually added to the SD-CI answer. This entry is labeled “est. SD(Q)-
CI” in Table 3 and is seen to be only 4 kcal/mol less than the full CI limit,
Other full CI calculations®® have demonstrated that this simple correction
works surprisingly well for small molecules. If less reliance on this correction
is desired, a whole host of MR SD-ClIs can be employed that gradually ap-
proach the full CI result. However, the size consistency error in the estimated
full CI result for CO + OH computed as a supermolecule compared to the
sum of the energies of CO and OH computed separately was still ~4 kcal/mol
for the largest MR SD(Q)-CI wave function.

Size consistency is only one of a number of desirable characteristics in a
theoretical model. In and of itself, it does not guarantee accuracy in the total
energy or any other property. A method that is not strictly size consistent may,
in fact, more closely match the full CI value for certain properties in certain
molecules. The user must be wary of the potential uncertainty associated with
any theoretical calculation.

Further illustrations of the effects of basis set enlargement and correlation
recovery are given in Table 3 for a stable intermediate geometry and a transition
state geometry. The errors are seen to be roughly comparable to the errors
associated with the energy difference between reactants and products.

Even with polarized basis sets, such as 6-31G**, and fourth-order per-
turbation theory, the errors in bond dissociation energies can be unacceptably
large for some purposes. Extension of the basis through the addition of diffuse
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s and p functions, a second set of d-type polarization functions, and intro-
duction of f functions on Li—Ne and d functions on hydrogen leads to a basis
set with the almost unpronounceable name of 6-311+ + G(3df,3pd).5! At the
MP4 level this basis set produces superior dissociation energies to 6-31G**.
For example, the error in the dissociation energy of H, drops from 3.9 to 1.3
kcal/mol. For the dissociation of N3, the error drops from 23.7 to 4.8 kcal/mol,
and for Ny + 3H, — 2NH; the error decreases from 15.1 to 1.2 kcal/mol.
Pople and co-workers have suggested that computed energy differences can be
improved by assuming the additivity of basis set enlargement effects and cor-
relation effects. They propose avoiding the expense of large basis set/high
correlation recovery calculations by performing several smaller calculations.
Although additivity cannot be justified on purely formalistic grounds,
these authors note that experience has shown this approach to work.

One-Electron Properties

There has been no systematic compilation of data on the performance
of most popular basis sets for one-electron properties other than the dipole
moment. Table 2 provides a rough indication of how well the Pople-style basis
sets do at the HF level. The effect of electron correlation on the dipole moment
(and other properties) varies greatly from molecule to molecule. An indication
of the effect of increasing basis set size can be seen in the following data for
the water molecule at the experimental geometry: HF/STO = 1,73 D, HF/3-
21G = 2.44 D, HF/6-31G* = 2.22 D, HF limit = 1.98 D. Large-scale CI
brings the value down to 1.87 D compared to 1.85 D (experimental). The
review by Davidson and Feller® lists results for 11 different basis sets and a
large number of properties on formaldehyde.

IN-DEPTH DISCUSSION

We now return to several of the topics already introduced, to cover them
more in-depth and, then, proceed to examine the topic of weak intermolecular
interactions.

Sources of Gaussian Primitives and
Contraction Coefficients

Early use of Gaussians saw much experimentation with ways to choose
the exponents. Sometimes they were optimized for a particular molecule, as
had been done with exponential functions. However, the increased number of
Gaussians, relative to STOs, made this impractical.

Initial efforts to derive transferable sets of exponents resulted in the first
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energy-optimized Gaussian basis sets for atoms, published by Huzinaga,®* For
each of the first-row elements, the SCF energy for a particular number of s-
and p-type functions was optimized with respect to each of the Gaussian primi-
tive exponents, Since the largest set included 10s and 6p functions, this meant
a 16-dimensional space had to be searched for a minimum in Escr. Dunning
produced contracted basis sets from both the (95,5p) and (10s,6p) sets of
exponents, >

Van Duijneveldt®* extended Huzinaga’s work through (14s,9p). This
basis produced an error in the neon SCF energy of only 0.00023 hartree,
compared to 0.0060 hartree for Huzinaga’s (10s,6p) set. The difficulties as-
sociated with independently optimizing each exponent in large Gaussian basis
sets are associated with the flatness of the surface and near linear dependence
in the variational parameters. This is illustrated by the fact that Faegri®® was
able to obtain another 0.00008 hartree from the van Duijneveldt (14s,9p) neon
basis by employing more refined optimization methods. Such difficulties were
responsible for the lack of even larger independently optimized basis sets ap-
pearing in print until the very recent work of Partridge on second-row (Na—
Ar)®8 and first-row (Li—Ne) plus third-row (K—Kr) atoms.®” The most accurate
of Partridge’s basis sets (18s,13p) are within 4 phartrees of the numerical
Hartree—Fock energy for the first-row atoms. The corresponding errors for

the second- and third-row atoms were 25 and 30 phartrees, respectively, with
basis sets of (20s,15p) and (24s,16p,12d).

Even-Tempered Gaussians

Shortly after van Duijneveldt published his list of energy-optimized Gaus-
sian exponents, a careful inspection of these values led Ruedenberg and co-
workers®® to revive an earlier suggestion of Reeves®® that the ratios of suc-
cessive exponents be held constant. Ruedenberg attached the label “even-tem-
pered” to such sets and published a series of papers on both exponential and
Gaussian type basis sets.”®~72 In an even-tempered basis the ith exponent, {;,
is given by af’, where a and B are fixed numbers for each s,p,d . . . symmetry.
If independently optimized exponents are plotted on a log scale the spacing
grows slightly wider at both the diffuse end (small {) and at the tight end (large
{), but remains nearly constant throughout most of the exponents. An even-
tempered set forms a geometric sequence with all exponents being equidistant
from their neighbors on a log({) plot.

The chief initial advantage to be gained from the even-tempered ap-
proximation is the reduction in the number of parameters to be optimized.
For example, all exponents in an (s,p) basis set on carbon can be specified in
terms of only four parameters (as, Bs, op, and B, ) regardless of the number
of primitives.

It was subsequently discovered that the optimized a(N) and B(N), where
N is the number of primitives, can be parameterized as functions of N. This
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provided a way of extrapolating to obtain values of « and B appropriate for
very large basis sets without the need for an expensive reoptimization.
Schmidt and Ruedenberg” published lists of a and B for elements up through
Ar so that, with the addition of polarization functions, it is now possible to
easily generate a sequence of wave functions that smoothly approaches a com-
plete set.

An energy penalty must, of course, be paid for imposing the even-tem-
pered restriction. As an example, an independently optimized (8s,4p) basis
gives an energy for the carbon atom of —37.680 hartree, while an even-tem-
pered (8s,4p) set gives only —37.668. If one additional s function is added to
the even-tempered set, the energy falls to —37.677 hartree, so the penalty was
worth about one s function. At the large basis set end of the spectrum, the
cumnulative effect of all the adjustable parameters in an independently opti-
mized set seems to be worth many more even-tempered primitives. Partridge
lists an energy of —37.688619 for carbon with an (18s,13p) basis, whereas
it takes a (26s,13p) even-tempered basis to achieve the same energy.

For correlation purposes the basis set which gives the lowest SCF energy
may not give the lowest CI energy. For example, an independently optimized
(19s,14p) basis set, which included an extra (s,p) diffuse set, gave a slightly
lower (0.00001 hartree) oxygen atom SCF energy than a (23s,12p) even-tem-
pered set. The two basis sets contain approximately the same total number of
functions (61 for the independently optimized set compared to 59 for the even-
tempered set). But at the SD-CI level, the even-tempered set yielded slightly
more correlation energy (by 0.00002 hartrees),

The ease of generating arbitrarily large even-tempered sets has meant
that some of the lowest energy SCF and CI wave functions for first-row atoms
and many small molecules have been produced with these basis sets. Tables
4 and § illustrate the sorts of results that may be achieved.

Wilson and co-workers have proposed using a large enough even-tem-
pered primitive set that the same set of exponents can be used for all first row
elements.”®”® Of course, this requires very large basis sets if neon is to be
treated with the same accuracy as lithium.

The concepts of even-tempered exponents and universal basis sets were
combined along with six constraints to produce “geometrical basis sets””” for
all atoms from H to Sr. The same set of exponents (but differing numbers of
s, P, and d functions) appears, Errors in the atomic energies range from 0.0002
hartree for the 6s hydrogen basis to 0.0005 hartree for the (13s,8p) carbon
basis to 0.0555 hartree for the (20s,13p,8d) Sr basis.

Well-Tempered Gaussians

Huzinaga and co-workers”® have extended the even-tempered idea by
developing a four-parameter function of the form:

L= a1 + ykKPL,  k=1,2,...,K
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for generating “well-tempered” Gaussian exponents. Since the exponents are
shared over s,p,d,f . . . Gaussians the number of independent parameters does
not increase as higher angular momentum functions are included. Optimizing
o, B, v, and 8 produced a (14s,9p) SCF energy for the neon atom only 0.1
mhartree higher than the independently optimized set. As with the even-tem-
pered primitives, these exponents are energy optimized in atomic SCF
calculations.

Besides a (14s,9p) set for the first row elements, a (16s,11p) set was
reported for second-row elements. Subsequent papers reported basis sets for
the third-row”® and second-row transition metals.®° SCF excitation energies
for various s*d” ™2, s'd”~?, and d” states were within 0.04 eV (first-row tran-
sition elements) and 0.01 eV (second-row transition elements) of the numerical
Hartree—Fock values.

MINI-i, MIDI-{, and MAXI-i, etc.

Among other rich sources of Gaussian exponents and contraction coef-
ficients are the books by Poirier et al.®! and Huzinaga and co-workers.>® Hu-
zinaga and Sakai®? reported Gaussian exponents and contraction coefficients
for elements Li—Ar as long ago as 1969. This work was continued by Tatewaki
and Huzinaga®? in a large collection of minimal and split valence basis sets
for all first row atoms. Contraction coefficients and exponents were optimized
at the SCF level. The MINI-; (; = 1—4) sets all possess three Gaussians in the
2s function and have varying numbers of Gaussians in the 1s and 2p contracted
functions. Using the notation (3s,3s/3p), MINI-1 is (3,3/3), MINI-2 is (3,3/4),
MINI-3 is (4,3/3), and MINI-4 is (4,3/4). By splitting the three-term valence
space s and p contractions into one function with two primitives and the other
primitive by itself, you obtain the MIDI-i sets, where, for example, MIDI-1 is
a [3s,2s,1s/2p,1p] contraction.

The common denominator of the MINI and MIDI contractions is the
use of three terms to represent the 2s atomic orbital. In the MAXI-i sets®* four
Gaussian primitives are used along with up to seven Gaussians for the 1s and
2p functions. These may be split in a variety of ways to yield basis sets, such
as [7s,2s,1s,1s/4p,1p,1p,1p], which can be used in conjunction with polari-
zation functions to yield high-accuracy results. No extensive calibration has
been done for these basis sets.

The first article in the series of papers by Tatewaki and Huzinaga dealt
with first-row transition metals (S¢~Zn).%* They reported two new minimal
basis sets, originally called STD-SET(1) and DZC-SET(1), which yielded
atomic orbital energies as good as, or better than, available double zeta quality
basis sets. The same authors®® suggest procedures for splitting the valence shell
AO so as to increase the basis set’s flexibility.

Other articles in this series discuss the effect of the s-symmetry combi-
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nation of Cartesian d’s on molecular binding energies,®” and other contracted
basis sets for elements through the second-row transition metals.®%-%°

Tests of the STO-3G basis set on transition metal compounds demon-
strated that, at least as far as the orbital energies of the 3d electrons and
molecular geometries are concerned, this minimal basis performed rather
poorly. It had also been necessary to introduce 4p (for first-row) and 5p (for
second-row) functions to obtain qualitatively good results in molecules. In the
same (1s,2s,3s,4s/2p,3p/3d) notation introduced previously for the MINI-/
basis sets, the MINI-1 sets for Sc—Zn are denoted as (3,3,3,3/3,3/3). Not only
are the MINI-1 sets smaller than the corresponding STO-3G sets, but the
resulting 3d orbital energies are nearly as good as a double-zeta quality basis
set.’® A comparison of the MINI-1’s performance in geometry optimizations
on nine transition metal compounds reveals it to be as good as, or better than,
the STO-3G sets. The worst performance, relative to STO-3G, occurs in C—O
bond lengths, which are ~0.07 A too long. This problem is solved if split
valence quality contractions are used for CO.

Still Others

McLean and Chandler®! have developed a widely used set of minimal,
double- and triple-zeta contracted functions for second-row elements Na~Ar
from Huzinaga’s (12s,8p) and (12s,9p) primitive sets.

Atomic Natural Orbitals

In the previous discussion of contracted basis functions, the “general”
contraction scheme of Raffenetti, in which every primitive can contribute to
every contracted function, was mentioned. The alternate approach produces
functions that are sometimes referred to as “segmented” contractions since the
primitives are partitioned into disjoint or almost disjoint sets. Because
FORTRAN programs to efficiently implement the general contraction scheme
were not very common in the 1960s and 1970s, most basis sets are of the
segmented variety.>> For example, all of the Pople-style basis sets are of this
type.

A recent suggestion by Almléf and Taylor”® takes advantage of the gen-
eral contraction scheme to construct contracted basis functions from the atomic
natural orbitals (ANQOs) obtained from valence SD-CI calculations on the free
atoms. They argue that large primitive sets can be contracted in this manner
without significant loss of accuracy in either SCF or correlated calculations.
The natural orbitals are obtained as the eigenvectors of the first-order density
matrix and their associated eigenvalues are referred to as the orbital “occu-
pation numbers.” Such numbers provide a measure of the relative importance
of each orbital in expanding the density matrix.

Alml6f and Taylor propose using all ANOs with comparable occupation
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numbers. Thus, in choosing a contracted basis set one would first decide ap-
proximately how many functions to include. Second, one would examine a
chart of the occupation numbers for the particular atoms involved in the mol-
ecule and select some threshold such that all ANOs with larger occupations
would be included. For example, when ANO occupation numbers are used as
a criterion for how to expand the minimal basis in neon the {ollowing sequence
is obtained: [2s,1p], [3s,2p,1d], {4s,3p,2d,1f], [5s,4p,3d,2f,1g]. The authors
conclude that the last of these sets, the (13s,8p,6d,4f,2g) — [5s,4p,3d,2f,1g]
basis, suffers no more than 1 kcal/mol contraction error for each angular
momentum type. A study by Ahlrichs and co-workers®* of the impact of higher
polarization functions on F, found roughly the same relative importance of
various types of polarization functions as was found by Almléf and Taylor.

In subsequent papers by Almléf et al.,?>?¢ the ANO basis sets were
applied to the calculation of molecular properties by supplementing the original
energy-optimized sets with diffuse functions, in accord with the experience of
others®” that such functions are often required for good agreement with ex-
periment. Additionally, some of the functions were permitted to float inde-
pendent of the atomic centers. Their positions were determined by minimizing
the SCF energy using a second-order convergence scheme and analytical first
derivatives. The motivation for freeing the functions from the atomic centers
was somewhat different from the motivation behind the subminimal floating
spherical Gaussians basis sets used in the 1960s. In this instance, the intent is
to better approximate the shift in the center of gravity of the charge distribution
resulting from bond formation.

These authors maintain that properties, such as the dipole moment, po-
larizabilities, and infrared intensities, can be reproduced with near Hartree—
Fock accuracy using a relatively small DZP + diffuse basis. In the review by
Davidson and Feller® the results from an atom-fixed ANO basis are compared
with results obtained from many other types of basis sets for a variety of energy-
related and 1-electron properties of formaldehyde.

Other recent applications of ANO basis sets include the work of Bausch-
licher and Langhoff on the *A ground state of FeH.®® Large multiconfiguration
SCF (MCSCF)/MR SD-CI calculations were carried out with a (20s,15p,10d,
6f,4g/8s,6p,4d) primitive basis contracted to [8s,7p,5d,3f,2g/4s,3p,2d].
Exponents for the f and g functions were chosen in an even-tempered fashion
(s = 0.0696, ag = 0.2088, Brg = 2.5).

The principal disadvantage of the above-mentioned ANO approach to
generating basis functions is the large number of primitives required, since the
integral evaluation time goes like »*, where # is the number of Gaussian primi-
tives. Based on a study of the oxygen atom, Dunning® recently proposed
smaller sets of primitives in a “correlation consistent” series of basis sets that
yield 99% of the correlation energy of the ANO sets while using 33% fewer
primitives. Like previous authors!°® Dunning chose to optimize (d,f,g) expo-
nents at the SD-CI level using an even-tempered restriction. For the (s,p) portion
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of the basis, he demonstrated that the HF (1s,25,2p) set, when augmented with
diffuse primitives as suggested by Raffenetti, generally does as well as the ANO
(s,p) basis. Both the ANO and correlation consistent basis sets were developed
to treat the valence portion of the correlation energy.

Several other authors have also pointed out advantages to floating or-
bitals. Huber’s floating orbital geometry optimization (FOGO) method*®? ap-
plies the Hellmann—Feynman force to the nuclei and the energy gradient to
the basis function centers to obtain a wave function that has a vanishing gra-
dient and a vanishing Hellmann—Feynman force.

Some applications of perturbation theory to molecular problems would
benefit from the simplicity of an extended floating spherical Gaussian basis.
Adamowicz and Bartlett??? have developed a procedure for projecting large
conventional basis set wave functions onto a floating spherical Gaussian basis.

Miscellaneous basis sets for first- and second-row elements come from
Roos and Siegbahn®? and for first-row transition metal atoms (Sc—Zn) from
Faegri and Speis.'®* The latter include energy optimized sets ranging from
(12s,6p,4d) up to (16s,11p,8d). A (15s,8p,5d) basis for first-row transition
metals was developed by Basch et al.1%® Still other sets are due to Wachters'®
and Roos et al.'%” Hay!°® argued that the flexibilicy of Wachters’ d-space set
should be increased. He has shown that the 3d orbitals of the 4s%3d”~2,
4s13d”~1, and 3d” electronic configurations are sufficiently different that the
use of basis sets optimized for one can lead to errors of several electron volts
in computed excitation energies relative to the Hartree~Fock limit. Compa-
rable problems do not arise for first-row atoms, since the 2s and 2p orbitals
for 2s?2p” and 2s'2p”*! configurations are very similar to each other.

Functions for Augmenting Basis Sets

The role of polarization functions in expanding the flexibility of split
valence or double-zeta quality basis sets has already been discussed. One of
two approaches is normally followed in determining reasonable values for the
exponents of such functions. Since polarization functions do not contribute to
the HF occupied orbitals of the atom’s ground state, their exponents cannot
be determined in the same straightforward manner as, for example, the (s,p)
exponents for carbon. In the 1960s it was common to optimize polarization
function exponents for a particular molecule (often a di- or triatomic) under
examination. As ab initio calculations on larger molecules were attempted, the
amount of time needed to reoptimize polarization exponents for each new
molecule was judged to be excessive. A search for some common set was begun.

With the 6-31G*" basis sets, Pople and co-workers recommended a set
of polarization function exponents based on an examination of the optimal
SCF values for a variety of molecules. In most instances, the energy loss that
resulted from not using the optimal polarization exponent was small because
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the total energy was a slowly varying function of {,o1. Other authors have
taken the same approach.

Although polarization function exponents do not contribute to HF AOQs,
they will make a contribution to the atomic wave function if correlation re-
covery is introduced. For example, d functions account for over 40% of the
correlation energy in nitrogen. Thus, as already mentioned in regard to Dun-
ning’s “correlation consistent” basis sets, some researchers have optimized
polarization exponents at some low level of atomic Cl or perturbation theory
and then used these values in molecular calculations. Representative values of
polarization exponents for some elements are listed in Table 6. A feeling for
the contribution of these functions to the total energy can be obtained from
Table 7. It is also apparent that the contributions from higher L functions
become more important when the relative importance of radial correla-
tion/angular correlation shifts in favor of the latter as Z increases.

An alternative to introducing higher L functions into the basis is to add
lower angular momentum functions at the bond centers, where the build-up
of charge is greatest.’® This approach borrows something from the floating
basis function idea, but does not allow the functions to be placed arbitrarily
in space. For first-row diatomics the introduction of a single (s,p) set at the
center of the bond provides 90% of the energy lowering obtained with a single
set of d functions at the nuclear centers. Many authors have suggested ex-
ponents for these functions and have advocated their use in SCF and correlated
wave function calculations,!10-112

When conventional atom-centered basis sets are used to compute the SCF
dissociation energy of a first-row diatomic molecule, D, is usually underes-
timated. This is because the HF limit for the separated atoms is relatively easy
to approach, requiring only s and p functions, whereas the molecule will require
many additional higher L functions at R.. The tendency to favor the separated
atoms persists even at the CI level. The introduction of bond-centered func-
tions, which contribute to the molecule but not the separated atoms, has been
proposed by Wright and Williams.'?*:114 By exploiting the basis set super-
position error at R. and balancing it against the basis set incompleteness error
at R = w, the authors report excellent agreement with experiment for molecules
like HF. Wright and Buenker''® have argued that systematically improving
both the atom-centered and bond-centered basis sets should allow D. to be
better estimated by simultaneously converging from above and below. On the
other hand, Bauschlicher!'® has warned that this balance is very difficult to
maintain as the geometry and correlation recovery method are varied. Further
- evidence of the kind of accuracy which can be expected from bond functions
comes from an analysis of 14 single- and multiple-bonded molecules at
the MP2 and MP3 levels. The 6-31G* basis is compared with the 6-31G
basis with added bond functions (bf). The observed root mean square de-
viations, in kcal/mol, are MP2: 8.1 (bf), 13.4 (6-31G*); MP3 10.3 (bf),
20.0 (6-31G*).1Y7
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Table 6 Selected Polarization Function Exponents

Source

Hydrogen

1p: 1.10
0.97
0.727

2p: (0.38, 1.62)

3p: (0.292, 0.838, 2.292)
1d: 1.47
1.057
2.00
2d: (0.662, 2.062)
1f:  1.397
Helium
1d:  2.00
Lithium
1d: 0.20
1f:  0.15
Beryllium
1d: 0.40
1f:  0.26
Boron
1d: 0.60
0.343
2d: (0.199, 0.661)
3d: (0.145, 0.402, 1.110)
1f:  0.490
2f:  (0.311, 0.882)
1g: 0.673
1f:  0.50
Carbon
1d: 0.80
0.550
2d: (0.318, 1.097)
3d: (0.228, 0.649, 1.848)
1f:  0.761
26 (0.485, 1.419)
1g: 1.011
1f: 0.80
Nitrogen
id: 0.80
0.817
2d: (0.469, 1.654)

(0.388, 1.407)

6-31G**, average of optimal SCF values®
Optimal SCF values for H; (Feller)®
Optimal full CI value for H; (Dunning)®
Optimal SCF values for H,

Optimal full CI values for H, (Dunning)
Optimal full CI values for H,

Optimal SCF value for H;

Optimal full CI value for H, (Dunning)
Pople and co-workers recommended value®
Optimal full CI values for H, (Dunning)

Pople and co-workers recommended value

6-31G**, average of optimal SCF values
Pople and co-workers recommended value

6-31G**, average of optimal SCF values
Pople and co-workers recommended value

6-31G**, average of optimal SCF values
Optimal valence SD-CI value for the atom

Pople and co-workers recommended value

6-31G**, average of optimal SCF values
Optimal valence SD-CI value for the atom

Pople and co-workers recommended value

6-31G**, average of optimal SCF values
Optimal valence SD-CI value for the atom

(continued)
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Table 6 Selected Polarization Function Exponents (continued)

Source

Nitrogen (continued)
3d: (0.335, 0.968, 2.837)
1f:  1.093
2f:  (0.68S5, 2.027)

1g:  1.427
1f:  1.00
Oxygen
1d: 0.80
1.185

2d: (0.6435, 2.314)

3d: (0.444, 1.300, 3.775)
1f:  1.428

2f (0.859, 2.666)

1g: 1.846
1f:  1.40
Fluorine
1d: 0.80
1.640

2d: (0.855, 3.197)

3d: (0.586, 1.725, 5.014)
1f:  1.917

2f:  (1.148, 3.562)

1g: 2.376
1f:  1.85
Neon
1d: 0.80
2.202

2d: (1.096, 4.014)

3d: (0.747, 2.213, 6.471)
1f:  2.544

2 (1.524, 4.657)

1g:  2.983
1. 2.50
Sodium
1d: 0.175
1f:  0.15
Magnesium
1d: 0.175
1f:  0.20
Aluminum
1d:  0.325
0.19
2d: (0.24, 4.84)
(0.11, 0.34)
1f: 0.25

Pople and co-workers recommended value

6-31G**, average of optimal SCF values
Optimal valence SD-CI value for the atom

Pople and co-workers recommended value

6-31G**, average of optimal SCF values
Optimal valence SD-CI value for the atom

Pople and co-workers recommended value

6-31G**, average of optimal SCF values
Optimal valence SD-CI value for the atom

Pople and co-workers recommended value

6-31G**, average of optimal SCF values
Pople and co-workers recommended value

6-31G**, average of optimal SCF values
Pople and co-workers recommended value

6-31G**, average of optimal SCF values
Optimal valence SD-Ci value (Feller)
Optimal SD-CI value, no core (Feller)
Optimal valence SD-CI value (Feller)
Pople and co-workers recommended value

(cantinued)
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Table 6 Selected Polarization Function Exponents (continued)

Source
Silicon
1d: 0.45 6-31G*", average of optimal SCF values
0.28 Optimal valence SD-CI value (Feller)
2d: (0.31, 5.90) Optimal SD-CI value, no core (Feller)
(0.15, 0.46) Optimal valence SD-CI value (Feller)
5d: (0.07, 0.20, 0.59, 1.86, Recommended SCF values (Magnusson and
7.30) Schaefer)
1f: 0.32 Pople and co-workers recommended value
0.35 Optimal valence SD-CI value (Feller)
7.30 Optimal SD-CI value, no core (Feller)
Phosphorus
1d: 0.55 6-31G**, average of optimal SCF values
0.38 Optimal valence SD-CI value (Feller)
2d: (0.47, 9.03) Optimal SD-CI value, no core {Feller)
(0.21, 0.63) Optimal valence SD-CI value (Feller)
5d: (0.08, 0.22, 0.63, 1.99, Recommended SCF values (Magnusson and
7.85) Schaefer)
1f: 045 Pople and co-workers recommended value
0.51 Optimal valence SD-CI value (Feller)
2f:  (0.24, 0.66) Optimal valence SD-CI value (Feller)
Sulfur
1d:  0.65 6-31G**, average of optimal SCF values
5d: (0.08, 0.23, 0.67, 2.12,  Optimal SCF for S*, 3s?3p?3d (*F)
8.35)
1£.  0.55 Pople and co-workers recommended value
Chlorine
1d: 0.75 6-31G**, average of optimal SCF values
5d: (0.085, 0.24, 0.71, Recommended SCF values (Magnusson and
2.25,8.90) Schaefer)
1f:  0.70 Pople and co-workers recommended value
Argon
1d: 0.85 6-31G**, average of optimal SCF values

4 References (19) and (20).

b D. Feller (Unpubhshed)

<T.H. Dunnmg, Jr.?? Similar exponents have also been given by Feller and Davidson.'
4 Frisch et al 8!

Certain molecular states and properties require additional basis set flex-
ibility beyond what is normally available from sets derived from strictly en-
ergetic considerations. For instance, in the case of negatively charged species,
the additional electron is often found in 2 more diffuse orbital than is normal.
The usual valence basis must be augmented if even qualitative agreement with
experiment is expected. The 3-21 + G and 3-21 + +G basis sets’!® possess an
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Table 7 MR SD-CI Contributions to the Correlation Energy from Functions of
Increasing L Value?

s p d f Total
Hy,  —0.0264 (65%) —0.0124 (30%) —0.0016 (4%) —0.0003 (1%) — 0.0407
S, P d f g Total?

—0.0936 (51%) —0.0762 (42%) —0.0106 6%) —0.0019 {1%) —0.1823
0.0929 (58%) —0.0608 (38%) —0.0061 ) —0.0013 -0.1611
)

) ( ) — ) ( (1%)
’P) - ( ) — ) (49 (1%)
’P) ~0.1261 (51%) —0.0964 (39%) —0.0209 (8%) —0.0047 (2%) —0.2481
2p) —0.1822 (57%) —0.1021 (32%) — 0.0250 (8%) —0.0084 (3%) —0.3177
) —0.1582 (51%) —0.1148 (37%) —0.0293 (10%) —0.0058 (2%) —0.3079

0

“ Energies in hartrees, with percentages of the total given in parentheses. The energy contri-
butions for various groups of functions came from uncontracted even-tempered Gaussian calcu-
lations with basis sets as large as (12s, 6p, 5d, 4f) on H, (Eqy = —1.1743) and (23s, 12p, 10d,
4f, 2g) on the first-row atoms.

® The total computed correlation energy. For companson purposes, the empirical estimates of
the correlation energy for these states are -0.0409 H; ('3;), —0.1889 N (*S), —0.1735 N*
(°P), —0.2596 O (°P), —0.3329 O~ (%P}, —0.3253 F {*P).

extra (s,p} diffuse set of functions on elements Li—F and an extra s set on
hydrogen, respectively, to improve the description of anion geometries.

Rydberg states are characterized by an electron occupying a very diffuse
orbital. Even large energy-optimized basis sets will not contain sufficiently
small exponents to handle such states. Suggested Rydberg state (s,p,d) expo-
nents for B—F are given by Dunning and Hay.*?

The isotropic hyperfine coupling constant (A} is 2 measure of the un-
paired spin density at a particular nucleus. Experience has shown that accurate
calculations of this property for first-row atoms require large (s,p,d,f) basis
sets with enough flexibility in the core to adequately reproduce the large neg-
ative core contribution to A, that will nearly cancel the positive valence con-
tribution.?!® A very wide range of answers is possible by unintentionally shift-
ing the basis set in the direction of the core or valence regions. The general
notion of a “balanced” basis set was introduced into the basis set literature
by Mulliken?? in a slightly different context. He warned of the need for “bal-
anced” basis sets for molecules containing different elements, so as to avoid
unphysical build-ups of charge on any one species.

Weak Interactions

Attempts to compute by ab initio methods the interaction energy of two
systems that are only weakly bound, such as hydrogen-bonded water molecules
or van der Waals complexes, have proven exceedingly difficult. The origin of
the difficulty primarily stems from the small magnitude of the quantity being
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sought relative to the basis set superposition error discussed previously. For
example, van Lenthe et al.’®? recently reported a potential curve for the He,
van der Waals complex. Using a very large (15s,4p,4d,2f,1g,1h) —
(7s,4p,4d,2f,1g,1h] contracted Gaussian basis and a sophisticated MCSCF/MR
SD-CI wavefunction, they obtained a well depth of 0.03439 mhartrees (0.022
kcal/mol), in good agreement with experimental measurements only after cor-
recting for the BSSE of 0.03978 mhartrees.

With this as an introduction, it may be wondered if weak interactions
are presently within the reach of ab initio methods. The answer, according to
a recent review by Chalasinski and Gutowski,'?? appears to be a qualified
“yes,”” Although the BSSE at the correlated wave function level is perhaps
beyond our means to entirely eliminate by attempting to saturate the basis,
the counterpoise correction scheme seems to work well. For dimers such as
He, and (H),, where the attraction comes almost entirely from what is known
as the “dispersion” force, rather high L values are needed. For many others,
such as Li*He, the demand placed on the basis set is not as great.

For hydrogen-bonded structures the situation is a little better. In an SCF
study of the BSSE by Schwenke and Truhlar,!?3:124 the authors focused on the
interaction energy of HF + HF using basis sets, which ranged from STO-3G
to an extended basis that included multiple sets of d’s on fluorine and p’s on
hydrogen plus bond functions. Regarding the effectiveness of the full coun-
terpoise correction, the authors conclude “that counterpoise corrections do
not systematically improve the accuracy obtained with small basis sets. Since
we also find the counterpoise corrections do not become more reliable as the
basis set size is increased, we conclude that in general the extra expense of a
counterpoise correction is not warranted.” The magnitude of the BSSE fluc-
tuated between 11 kcal/mol (STO-3G) and 0.3 kcal/mol (extended) out of a
total interaction energy of 19 kcal/mol.

Even larger basis sets were employed by Frisch et al.?® in a follow-up
study that included correlation recovery at the MP4 level and reported excellent
agreement with extensive experimental data. Here again, the authors concluded
that “Counterpoise estimates of the basis set superposition error do not provide
quantitative information about basis set deficiencies in studies of hydrogen
bonded complexes and are a poor substitute for expansion of the basis set if
quantitative accuracy is desired.”

Taking the opposite view, Szalewicz et al.’?¢ examined the water dimer
with still larger basis sets involving 212 (s,p,d,f) functions. They found that
the SCF interaction energy could be satisfactorily reproduced with a small
double-zeta quality basis plus properly chosen polarization functions, when
used in conjunction with the counterpoise method. The correlation contri-
bution to the interaction energy was computed to be —1.0 + 0.3 kcal/mol.
Alberts et al.}*” have also recently advocated the use of the full counterpoise
method for weakly bound complexes of HF and CO, CO, and N,CO.

Dykstra and co-workers have argued that the counterpoise method
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should be used only as a probe of the qualitative magnitude of the BSSE,
because it sometimes overestimates and sometimes underestimates the BSSE.
They proposed a modified counterpoise method for use in hydrogen-bonding
situations, which they call the “polarization” counterpoise method.'*® The
new method is based on the premise that a more accurate measure of the BSSE
can be obtained from measuring the energy lowering upon bringing monomer
A up to the functions on center B if A experiences the electric field of B as it
would in the actual dimer. Because the conventional counterpoise method
measures the energy lowering for an isolated monomer, it will most likely
underestimate the BSSE associated with hydrogen bonding. In Dykstra’s ap-
proach the field of the other monomer is represented by appropriately placed
positive and negative charges equal to the nuclear and electronic charge on
the other monomer.

HF is a highly polar molecule. Dykstra’?® has shown that a classical
electrostatic approach using polarizable charge distributions can often accu-
rately reproduce the results of high level ab initio calculations. The advantage
of this approach is that it requires high quality calculations on the monomer
only. This is to obtain accurate moments (e.g., dipole or quadrupole), polar-
izabilities, and hyperpolarizability. Very extended basis sets are needed.

If p is the electric dipole moment of a molecule, then in the presence of
an external electric field E, w can be expressed as

w=pn® + aF + kBE? + AyE? + -

where w° is the permanent dipole moment, «a is the first order (dipole) polar-
izability, B is the second order hyperpolarizability, etc. The symbols x, A . ..
are fixed numerical constants chosen by convention. (A more detailed descrip-
tion of this approach is described in the chapter by Dykstra et al.) Work by
Purvis and Bartlett on H,O!?? and Sekino and Bartlett on HF*?! shows the
need for quite diffuse functions. For water, center-of-mass basis functions with
exponents as small as 0.0079 for s and 0.0057 for p were employed along
with a large [7s,5p,3d/5s,3p] basis set on the atoms. For HF an even larger
[5s,3p,4d,2f/5s,3p) basis, capable of yielding 92% of the valence correlation
energy at the MP4 level, was used. In spite of the number of basis functions,
the B hyperpolarizability was still only 50-70% of the experimental value in
water.

CONCLUSION

As long as molecular wavefunctions are expanded in terms of finite basis
sets, there will continue to be a need to calibrate the accuracy of these sets
with regard to the ever-increasing list of properties they are asked to provide.
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For the sake of the nonspecialist, this information must be both readily avail-
able and readily digestible. The ab initio model suffers from a well-deserved
reputation for being computationally expensive. However, as the trend toward
improved hardware and software technology accelerates, the ab initio model
is employed in more and more laboratories as a useful adjunct to experimental
techniques. The same is true of the other computational chemistry methods.
Researchers must learn where each computational procedure can be used with
good assurance of success and where to treat the computer’s answer with
skepticism.
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