CHAPTER

THREE
THE HARTREE-FOCK APPROXIMATION

The Hartree-Fock approximation, which is equivalent to the molecular
orbital approximation, is central to chemistry. The simple picture, that
chemists carry around in their heads, of electrons occupying orbitals is in
reality an approximation, sometimes a very good one but, nevertheless, an
approximation—the Hartree-Fock approximation. In this chapter we de-
scribe, in detail, Hartree-Fock theory and the principles of ab initio Hartree-
Fock calculations. The length of this chapter testifies to the important role
Hartree-Fock theory plays in quantum chemistry. The Hartree-Fock ap-
proximation is important not only for its own sake but as a starting point
for more accurate approximations, which include the effects of electron
correlation. A few of the computational methods of quantum chemistry
bypass the Hartree-Fock approximation, but most do not, and all the
methods described in the subsequent chapters of this book use the Hartree-
Fock approximation as a starting point. Chapters 1 and 2 introduced the
basic concepts and mathematical tools important for an indepth under-
standing of the structure of many-electron theory. We are now in a position
to tackle and understand the formalism and computational procedures asso-
ciated with the Hartree-Fock approximation, at other than a superficial level.

In addition to the basic formalisms of Hartree-Fock theory, this chapter
includes a number of ab initio calculations. These calculations are not in-
cluded as a review of available computational results, but as a means of
illustrating fundamental ideas. The importance of these calculations to an
understanding of the formalisms of this and later chapters cannot be over-
emphasized. To illustrate the Hartree-Fock approximation, we have per-
formed calculations of each of the quantities discussed in the text (total
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energies, ionization potentials, equilibrium geometries, dipole moments, etc.),
using a standard hierarchy of basis sets (STO-3G, 4-31G, 6-31G* and
6-31G**) and a standard collection of molecules (H,, CO, N,, CH,, NH,,
H,0, and FH). We thus illustrate the formalism and the accuracy or in-
accuracy of the Hartree-Fock approximation with these calculations. In
later chapters, we use the same molecules and the same basis sets to illustrate
the formalisms of those chapters. In this way we can compare calculations
from chapter to chapter to see how a perturbation calculation improves the
Hartree-Fock dipole moment of CO, to see how a Green’s function calcula-
tion improves the Hartree-Fock ionization potentials of N, etc. The cal-
culations are intimately related to our discussion of the formal methods of
quantum chemistry.

In addition to these larger calculations, we have used two smaller ab
initio models to illustrate theory. The minimal basis model of H,, which
we introduced in the previous chapter, is applied ubiquitously throughout
the book. To specifically illustrate the machinery of Hartree-Fock self-
consistent-field (SCF) calculations, we use the minimal basis model of HeH*.
This model is perhaps our most important means of describing the SCF
procedure. Appendix A contains a derivation of formulas for all the integrals
required in this HeH* calculation, and Appendix B contains a short

- FORTRAN program for performing ab initio Hartree-Fock calculations on

S

any two-electron diatomic molecule using the STO-3G basis set. Included
is the detailed output for the calculation on HeH*. The program is written
so that it can be easily understood by anyone who has followed the text
and has a minimal knowledge of FORTRAN. While it is simple, this program
contains the essential ideas (but not the details) of large ab initio packages
such as Gaussian 80.! Appendices A and B and Subsection 3.5.3 are intended
to make explicit the basic manipulations of the SCF procedure and take
some of the mystery out of such calculations.

In Section 3.1 we present the Hartree-Fock eigenvalue equations and
define and discuss associated quantities such as the coulomb, exchange, and
Fock operators. The results of this section are presented without derivation
as summary of the main equations of Hartree-Fock theory.

Section 3.2 constitutes a derivation of the results of the previous section.
The order of presentation of these two sections is such that the derivations
of Section 3.2 can be skipped if necessary. For a fuller appreciation of Hartree-
Fock theory, however, it is recommended that the derivations be followed.
We first present the elements of functional variation and then use this
technique to minimize the energy of a single Slater determinant. A unitary
transformation of the spin orbitals then leads to the canonical Hartree-Fock
equations.

Section 3.3 continues with formal aspects of Hartree-Fock theory. We
derive and discuss two important theorems associated with the Hartree-
Fock equations: Koopmans’ theorem and Brillouin’s theorem. The first
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theorem constitutes an interpretation of the Hartree-Fock orbital energies
as ionization potentials and electron affinities. The second theorem states
that the matrix element between a Hartree-Fock single determinant and
determinants which differ by a single excitation is zero. This theorem is
important in multideterminantal theories. Finally, in preparation for per-
turbation theory (Chapter 6), we define a Hartree-Fock Hamiltonian such
that determinants formed from the Hartree-Fock spin orbitals become exact
eigenfunctions of this Hamiltonian.

Section 3.4 is the most important section of this chapter. Here we derive
the Roothaan equations, which allow one to calculate Hartree-Fock solutions
for the ground state of closed-shell molecules. To solve the Hartree-Fock
equations, it is necessary to give explicit form to the spin orbitals. This book
uses two sets of spin orbitals. The restricted closed-shell set of spin orbitals
leads to restricted closed-shell wave functions via the Roothaan equations.
An unrestricted open-shell set of spin orbitals leads to unrestricted open-shell
wave functions via the Pople-Nesbet equations as discussed in a later
section. In this section, the general spin orbital formulation of the Hartree-
Fock equations is first reduced to a spatially restricted closed-shell formula-
tion, by replacing the general spin orbitals by a set of restricted closed-shell
spin orbitals. A basis set is then introduced; this converts the spatial integro-
differential closed-shell Hartree-Fock equations to a set of algebraic equa-
tions, the Roothaan equations. The rest of the section then constitutes a
detailed discussion of the Roothaan equations, their method of solution
(the self-consistent-field (SCF) procedure), and the interpretation of the
resulting wave functions.

Section 3.5 contains a detailed illustration of the closed-shell ab initio
SCF procedure using two simple systems: the minimal basis set descriptions
of the homonuclear (H,) and heteronuclear (HeH *) two-electron molecules.
We first describe the STO-3G minimal basis set used in calculations on these
two molecules. We then describe the application of closed-shell Hartree-Fock
theory to H,. This is a very simple model system, which allows one to examine
the results of calculations in explicit analytical form. Finally, we apply the
Roothaan SCF procedure to HeH *. Unlike H,, the final SCF wave function
for minimal basis HeH* is not symmetry determined and the HeH * example
provides the simplest possible illustration of the iterative SCF procedure.
The description of the ab initio HeH* calculation given in the text is based on
a simple FORTRAN program and the output of a HeH™ calculation found
in Appendix B. By following the details of this simple but, nevertheless, real
calculation, the formalism of closed-shell ab initio SCF calculations is made
concrete.

Section 3.6 describes general aspects of the polyatomic basis sets used in
many current calculations. The choice of a basis set for quantum chemical cal-
culations is mainly an art rather than a science, but the principal unifying con-
cepts involved in the choice of a basis set are described. In addition, the
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basis sets of Pople and co-workers, used in the calculations of this book, are
explicitly defined.

In Section 3.7 we perform a number of ab initio calculations to illustrate
the application and the results of the closed-shell SCF procedure. Our prin-
cipal aim is to give the reader a feeling for a few of the problems to which
ab initio SCF calculations can be applied, and the accuracy that can be
expected of such Hartree-Fock calculations. To systematize these applica-
tions, we apply a standard hierarchy of basis sets to each problem.

In the final Section 3.8, we leave the restricted closed-shell formalism
and derive and illustrate unrestricted open-shell calculations. We do not
discuss restricted open-shell calculations. By procedures that are strictly
analogous to those used in deriving the Roothaan equations of Section 3.4,
we derive the corresponding unrestricted open-shell equations of Pople and
Nesbet. To illustrate the formalism and the results of unrestricted calcula-
tions, we apply our standard basis sets to a description of the electronic
structure and ESR spectra of the methyl radical, the ionization potential of
N,, and the orbital structure of the triplet ground state of O,. Finally, we de-
scribe in some detail the application of unrestricted wave functions to the im-

' proper behavior of restricted closed-shell wave functions upon dissociation.
- We again use our minimal basis H, model to make the discussion concrete.

' 3.1 THE HARTREE-FOCK EQUATIONS

' In this section we summarize the main results obtained in a derivation of the
+ Hartree-Fock equations. We do this so that the somewhat involved details
of the derivation given in the next section (Section 3.2) can be skipped, if
desired.

For our purposes, we can equate Hartree-Fock theory to single deter-
minant theory,? and we are thus interested in finding a set of spin orbitals
{x.} such that the single determinant formed from these spin orbitals

|\Po> = leXZ "t XaXb " XND (3.1)

is the best possible approximation to the ground state of the N-electron
system described by an electronic Hamiltonian . According to the varia-
tional principle, the “best” spin orbitals are those which minimize the elec-
tronic energy

1
Ey = (¥o|#|¥) =Y <alhla) + 52‘; {ab| |ab)
=Y {aha) + %g [aa|bb] — [ab|ba] 3.2)

By a procedure outlined in Section 3.2, we can systematically vary the
spin orbitals {y,}, constraining them only to the extend that they remain




112 MODERN QUANTUM CHEMISTRY

orthonormal,

<Xa | Xb> = 5ab (33)

until the energy E, is a minimum. In doing so (in a formal way) one obtains
an equation that defines the best spin orbitals, the ones that minimize E,.
This equation for the best (Hartree-Fock) spin orbitals is the Hartree-Fock
integro-differential equation

h()(1) + ¥ [fdxz |x.,(2)|2r;2‘]x.,(1) -¥ [ [ax, x§(2)xa(2)rfz‘]x¢.(1)

b#*a b*a
= £,14(1) (34)
where
(1) = —2v2 -y Za (35)
2 ATia

is the kinetic energy and potential energy for attraction to the nuclei, of a
single electron chosen to be electron-one. The orbital energy of the spin
orbital x, is ¢,.

3.1.1 The Coulomb and Exchange Operators

The two terms in Eq. (3.4) involving sums over b are those that in single
determinant Hartree-Fock theory represent electron-electron interactions.
Without these terms,

h(Dxa(1) = €.x,(1) (3.6)

would simply be a one-electron Schrédinger equation for the spin orbital
states of a single electron in the field of the nuclei. The first of the two-electron
terms is the coulomb term, which is also present in Hartree theory—a theory
which uses a Hartree product wave function rather than an antisymmetrized
Hartree product (Slater determinant) wave function. The second two-electron
term is the exchange term, which arises because of the antisymmetric nature
of the determinantal wave function.

The coulomb term has a simple interpretation. In an exact theory, the
coulomb interaction is represented by the two-electron operator r;;!. In
the Hartree or Hartree-Fock approximation, as Eq. (3.4) shows, electron-
one in x, experiences a one-electron coulomb potential

o) = ¥ [axlu@)ri (37)

db*a

Let us consider this potential. Suppose electron 2 occupies x,. The two-
electron potential r{;! felt by electron 1 and associated with the instantaneous




THE HARTREE-FOCK APPROXIMATION 113

position of electron 2 is thus replaced by a one-electron potential, obtained
by averaging the interaction ry; of electron 1 and electron 2, over all
space and spin coordinates x, of electron 2, weighted by the probability
dx, |x,(2)|* that electron 2 occupies the volume element dx, at x,. By
summing over all b # a, one obtains the total averaged potential acting on
the electron in yx,, arising from the N — 1 electrons in the other spin orbitals.
Associated with this interpretation it is convenient to define a coulomb
operator

S(1) = [ax, @)PPris (38)

which represents the average local potential at x, arising from an electron
n .

The exchange term in (3.4), arising from the antisymmetric nature of the
single determinant, has a somewhat strange form and does not have a simple
classical interpretation like the coulomb term. We can, however, write the
Hartree-Fock equation (3.4) as an eigenvalue equation

[h(l) + ) AH)- X J"},(l)]xa(l) = €,)4(1) (39)
b#a b#a

provided we introduce an exchange operator X (1), defined by its effect when

operating on a spin orbital yx,(1),

A1) = [ [ax, i x,,(z)] () (3.10)
This is to be compared with the previous result (3.8) for the coulomb operator,

20l = [ [ax. x,t(z)r;;x,,(z)] xd1) (3.11)

Operating with J¢;(1) on y,(1) involves an “exchange” of electron 1 and
electron 2 to the right of r;;' in (3.10), relative to (3.11). Unlike the local
coulomb operator, the exchange operator is said to be a nonlocal operator,
since there does not exist a simple potential ) ,(x,) uniquely defined at a
local point in space x,. The result of operating with J(x,) on x,(x,) depends
on the value of x, throughout all space, not just at x,, as is evident from (3.10).
One could not, for example, draw contour plots of the exchange potential
as one can for the coulomb potential. For an electron in y, the expectation
values of the coulomb and exchange potentials #, and )¢, arc just the
coulomb and exchange integrals described in the last chapter, i.e.,

QD[ AD (1)) = J-dxn dx; x3(ONri2 (¥ Qa2 = [aa|bb] (3.12)

QDD a1 = fdn dxz x¥(D(D)riz x3x(2) = [ablba] (3.13)




114 MODERN QUANTUM CHEMISTRY

3.1.2 The Fock Operator
The Hartree-Fock equation, as we have written it up to this point, is
[h(l) + 2 AH—- X J"z,(l)])ca(l) = g,14(1) (3.14)
b#a b#a :

This is of the eigenvalue form. However, the operator in square brackets
appears to be different for every spin orbital y, on which it operates (because
of the restricted summation over b # a). Inspecting Egs. (3.10) and (3.11),
it is obvious, however, that

[£(1) = A (D)]x.(1) =0 (3.15)

It is thus possible to add this term to (3.14), eliminate the restriction on the
summation, and define a Fock operator f by

J)=h(1) + ;jb(l) — A1) (3.16)

so that the Hartree-Fock equations become

SIa> = eaxad (3.17)

This is the usual form of the Hartree-Fock equations. The Fock operator
f(1) is the sum of a core-Hamiltonian operator h(1) and an effective one-
electron potential operator called the Hartree-Fock potential v'¥(1),

(1) = ;jb(l) — H(1) (3.18)
That is,
f(1) = h(1) + vF(1) (3.19)

Sometimes it is convenient to write the exchange potential in terms of
an operator #,,, which, operating to the right, interchanges electron 1 and
electron 2. Thus

H(xa(1) = LJ‘alxz X @)ry. z‘xa(Z)] (1)

=| [ax, p@riio, sz(z)] x1) (320
The Fock operator is thus written, using &, ,, as
(1) = h(1) 4+ (1)
= h(1) + ¥, [dx, QI - 2190(2) (321)
b

The Hartree-Fock equation
Sad = edxa) (322)
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is an eigenvalue equation with the spin orbitals as eigenfunctions and the
energy of the spin orbitals as eigenvalues. The exact solutions to this integro-
differential equation correspond to the “exact” Hartree-Fock spin orbitals.
In practice it is only possible to solve this equation exactly (i.e., as an integro-
differential equation) for atoms. One normally, instead, introduces a set of
basis functions for expansion of the spin orbitals and solves a set of matrix
equations, as will be described subsequently. Only as the basis set approaches
completeness, i.€., as one approaches the Hartree-Fock limit, will the spin
orbitals that one obtains approach the exact Hartree-Fock spin orbitals.

While (3.22) is written as a linear eigenvalue equation, it might best be
described as a pseudo-eigenvalue equation since the Fock operator has a
functional dependence, through the coulomb and exchange operators, on the
solutions {y,} of the pseudo-eigenvalue equation. Thus the Hartree-Fock
equations are really nonlinear equations and will need to be solved by
iterative procedures.

Exercise 3.1 Show that the general matrix element of the Fock operator
has the form

Qulf > = <ilh|j> + g [ij|bb] — [ib|bj] = (ilh|j> + g (ib|ljby (3.23)

3.2 DERIVATION OF THE HARTREE-FOCK EQUATIONS

' In this section we derive the Hartree-Fock equations in their general spin

orbital form, i.e., we obtain the eigenvalue equation (3.17) by minimizing
the energy expression for a single Slater determinant. The derivation makes
no assumptions about the spin orbitals. Later, we will specialize to restricted
and unrestricted spin orbitals and introduce a basis set, in order to generate
algebraic equations (matrix equations) that can be conveniently solved on a
computer. In the meantime, we are concerned only with the derivation of
the general integro-differential equations (the Hartree-Fock eigenvalue
equations), the nature of these equations, and the nature of their formal
solution. To derive the equations we will use the general and useful technique
of functional variation.

3.2.1 Functional Variation

Given any trial function ®, the expectation value E[®] of the Hamiltonian
operator ¢ is a number given by

E[®] = (D|o#¢|D) (3.24)

We say that E[®] is a functional of ® since its value depends on the form of
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a function, i.e., the function ®, rather than any single independent variable,
Suppose we vary ® by an arbitrarily small amount, by changing the para-
meters upon which & depends, for example. That is,

®-d+ b (3.25)
The energy then becomes
E[® + 68] = (® + 68| |D + 56
= E[®] + {<30|#|®) + <B|]6D)} +
= E[®] +6E + - -- (3.26)

where 6E, which is called the first variation in E, includes all terms that are
linear, i.e., first-order, in the variation 6. Notice that we can treat “5” just
like a dlfferentlal operator, ie., 5<(l>|9f|d>> (SD)|o¢|®) + (d>|9f|6<b) In
the variation method, we are looking for that @ for which E[®] is a minimum.
In other words, we wish to find that & for which the first variation in E[®]
is zero, i.e.,

SE=0 (3.27)

This condition only ensures that E is stationary with respect to any variation
in ®. Normally, however, the stationary point will also be a minimum.

We will illustrate the variational technique by rederiving the matrix
eigenvalue equation of the linear variational problem given in Subsection
1.3.2. Given a linear variational trial wave function,

N
@)=Y c|¥D (3.28)
i=1
we want to minimize the energy
E = (D|#|D) = Y crcWi|#|¥;» (3.29)
ij

subject to the constraint that the trial wave function remains normalized,
ie.,

(B|BY —1=Y cPeK¥i|¥>-1=0 (3.30)
ij
Using Lagrange’s method of undetermined multipliers described in Chapter

1, we therefore minimize, with respect to the coefficients c;, the following
functional

& = (D|#|®) — EKD|D) — 1)

= Z TS EA D E(Z cte V| — l) (3.31)
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where E is the Lagrange multiplier. Therefore, we set the first variation in
Z equal to zero.

ij ij
+ Y oKV H|Y> —EY croc¥i|¥;)> =0 (3.32)
ij ij

Since E is real (& is real), after collecting terms and interchanging indices,
we get

Y dck [Z H;c; — ES,-ij-:I + complex conjugate = 0 (3.33)
i j

where H;; = (¥,|#|¥;). The linear expansion functions |'¥;) are not as-
sumed to be orthonormal, but are assumed to overlap according to

STEDENT (3.34)

Since dc} is arbitrary (c}¥ and c; are both independent variables), the quantity
in square brackets in (3.33) must be zero, or

ZHUCJ = EZ Squ
J J

He = ESc (3.35)

' Essentially the same result (with S = 1 and real coefficients) was previously
obtained in Subsection 1.3.2. The functional variation technique thus leads
to the same result as is obtained by differentiating with respect to the coef-
ficients. Functional variation is a more general technique, however, and
we now proceed to derive the Hartree-Fock equations using it.

3.2.2 Minimization of the Energy of a Single Determinant

Given the single determinant |Wo) = |xyx2 " XaXs " An)» the energy
Ey = (¥o|#|¥,) is a functional of the spin orbitals {,}. To derive the
Hartree-Fock equations we need to minimize Ey[{yx,}] with respect to the
spin orbitals, subject to the constraint that the spin orbitals remain ortho-
normal,

[ax, xx (1) = [a]b] = 6.5 (3.36)
That is, the constraints are of the form
[a|b] — 8, =0 (3.37)
We therefore consider the functional #[{x,}] of the spin orbitals
N N
L[{1a}] = Eol[{xa}] = 2 2 &wllal|b] — ) (3.38)

a=1 b=1
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where E, is the expectation value of the single determinant |'¥,),

Bol{}] = Y, [abla] + 3. 3. [aaltb] ~ [ablba] 039

and the g, constitute a set of Lagrange multipliers. Because . is real and
[a|b] = [b|a]*, the Lagrange multipliers must be elements of a Hermitian
matrix

sba = g:b (3.40]

Exercise 3.2 Prove Eq. (3.40).

Minimization of E,, subject to the constraints, is thus obtained by
minimizing .Z. We therefore vary the spin orbitals an arbitrary infinitesimal
amount, i.e.,

Xa—= Xa + OXq (341
and set the first variation in .# equal to zero,
N N
0L =0Ey— ) Y &dalb]=0 (342
a=1 b=1

This follows directly from Eq. (3.38) since the variation in a constant (J,,) is
zero. Now

a[alb] = [JXa|Xb] + [Xa|51b] (343)
and

5E0 = 2 [JXalhIXa] + [Xalhl‘sXa]

1]
[

N N
L L [Onatel vos] + [xadal 1o2o] + Ditakel S262s] + Dtatal 190]

N
-5 X Z [Oxate| Xsxa] + [xad¥o| Xoka] + [tako| O2s%a] + [tatts | 10%2]
(344)

Exercise 3.3 Manipulate Eq. (3.44) to show that

0Eq = Z [Oxalhlxa] + Z Z [0xaa| X6x5) — [OXaXs| XsXa

a=1

+ complex conjugate
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Also
stba([6Xa|Xb] + [Xa|Oxs)) = Zb €palOXa|X5] + Zb Ean Xp| O%a)

=2 el |l + 3 il 01"
a ab

=Y £,4[0).|xs] + complex conjugate (3.45)
ab

As a result of the above exercise and Eq. (3.45), the first variation in %
of Eq. (3.42) becomes

N N N
62 = L [Otdhlra] + 2, 3. [o%atal toxs] = [62ato| 1512]

N N
- Z Z Gba[5Xa|Xb] + complex conjugate

a=1 bh=1
=0 (3.46)

We can use definitions (3.10) and (3.11) for the coulomb and exchange
operators to write this result in the form

N N N
0f = Z,l fdxl 5x2‘(1)[h(1)xa(1) + b; (A1) = A (D)ra(D) — X 8baXb(1)]

b=1
+ complex conjugate = 0 (3.47)

Since dx*(1) is arbitrary, it must be that the quantity in square brackets is
zero for all a. Therefore,

N N
|:h(1) + bz,l 1) - fb(l)]xa(l) = b; gads(l) a=12,...,N (348)

‘ The quantity in square brackets above is just our definition of the Fock
operator f(1); therefore, the equation for the spin orbitals takes the form

N

lea) = Zl 8ba|Xb> (349)

b=

This result is perhaps surprising at first glance since it is not in the canonical
(standard) eigenvalue form of Eq. (3.17). The reason is that any single deter-
minant wave function [¥,) formed from a set of spin orbitals {x,} retains
a certain degree of flexibility in the spin orbitals; the spin orbitals can be
mixed among themselves without changing the expectation value E, =
(¥o|5#|¥,). Before obtaining the canonical form of the Hartree-Fock

equations, we need to consider unitary transformations of the spin orbitals
among themselves.
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3.2.3 The Canonical Hartree-Fock Equations

Let us consider a new set of spin orbitals {y,} that are obtained from an
old set {x,} (those of Eq. (3.49)) by a unitary transformation,

Xa= ; 21U ba (3.50)

A unitary transformation, which satisfies the relation
Ut=uU-! (3.51)

is one which preserves the orthonormality property. That is, if we start with
a set {y,} of orthonormal spin orbitals, the new set {x,} will also be ortho-
normal. Let us define a square matrix A

x1(1)  x21) oo x (1) o xa(1)
A= XI(:Z) Xz(:z) Xa(:z) anz) (3.52)
X1(N) x2(N) -+ x/(N) -+ xmN)

such that the wave function |¥,) is just the normalized determinant of this
matrix

[¥o> = (N1~ 12 det(A) (3.53)

Using definition (3.50) for the transformed orbitals and the rules for ordinary
multiplication, it becomes clear that the matrix A’ which corresponds to A but
contains the transformed spin orbitals is

00 1) o xdD\ Uy Uy o Uy
A’ = AU = XI(.2) Xz('z) XN(.Z) U.zl U.zz U.zN
() LW 2N \Un Ups - Uy
xi(1)  xx(1) - (1)
=[ %@ 6@ 6l (3.54
LN ) W)

Therefore, since
det(AB) = det(A)det(B) (3.55)

the determinant of transformed spin orbitals is related to the determinant
of the original spin orbitals by

det(A’) = det(U)det(A) (3.56)
or, equivalently
[¥o) = det(U)|¥,) (3.57)
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Now, since
U'U=1 (3.58)
we have !
det(U'U) = det(U") det(U) = (det(U))* det(U) = |det(U)|* = det(1) =1
(3.59)
Therefore,
det(U) = €' (3.60)

and the transformed single determinant |y of Eq. (3.57) can at most differ
from the original determinant |[\¥,) by a phase factor. If U is a real matrix
then this phase factor is just + 1. Because any observable property depends
on |¥|?, for all intents and purposes, the original wave function in terms of
the spin orbitals {x,} and the transformed wave function in terms of the spin
orbitals {y,} are identical. For a single determinant wave function, any
expectation value is therefore invariant to an arbitrary unitary transfor-
mation of the spin orbitals. Thus the spin orbitals that make the total energy
stationary are not unique, and no particular physical significance can be
given to a particular set of spin orbitals. Localized spin orbitals, for example,
are not more “physical” than delocalized spin orbitals.

We can use the invariance of a single determinant to a unitary transfor-

. mation of the spin orbitals to simplify Eq. (3.49) and put it in the form of an

eigenvalue equation for a particular set of spin orbitals. First, however, we
need to determine the effect of the above unitary transformation on the Fock

" operator f and the Lagrange multipliers ¢,,. The only parts of the Fock

i
i

operator that depend on the spin orbitals are the coulomb and exchange
terms. The transformed sum of the coulomb operators is

T S =Y [dx, @it

- [); U;::.Uc..] [, x8@)riixd2 (3.61)
But
Y UtU,., =(UUY, =4, (3.62)
so that “
LU = [dx, griin@ = T A (3.63)

Thus the sum of coulomb operators is invariant to a unitary transformation
of the spin orbitals. In an identical manner it is easy to show that the sum of
exchange operators, and hence the Fock operator itself, is invariant to an
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arbitrary unitary transformation of the spin orbitals, i.c.,

S =fQ1) (3.64)

We now need to determine the effect of the unitary transformation on
the Lagrange multipliers ¢,,. Multiplying Equation (3.49) by (xc| shows that
the Lagrange multipliers are matrix elements of the Fock operator

N

e Sy = Zl EpalXe| XY = Eca (3.65)

b=

Therefore,
e = [ dx, LS
=3 UsUa [dxi(0)f (Dra)
= Zd UtecaUa (3.66)

or in matrix form
g =UteU (3.67)

From (3.40), e is a Hermitian matrix. It is always possible, therefore, to find
a unitary matrix U such that the transformation (3.67) diagonalizes ¢. We
are not concerned with how to obtain such a matrix, only that such a matrix
exists and is unique. There must exist, then, a set of spin orbitals {x,} for
which the matrix of Lagrange multipliers is diagonal.

S = lxa> (3.68)

The unique set of spin orbitals {x,} obtained from a solution of this eigen-
value equation is called the set of canonical spin orbitals. We henceforth
drop the primes and write the Hartree-Fock equations as

x> = editad (3.69)

The canonical spin orbitals, which are a solution to this equation, will
generally be delocalized and form a basis for an irreducible representation
of the point group of the molecule, i.e., they will have certain symmetry
properties characteristic of the symmetry of the molecule or, equivalently,
of the Fock operator. Once the canonical spin orbitals have been obtained
it would be possible to obtain an infinite number of equivalent sets by a
unitary transformation of the canonical set. In particular, there are various
criteria (see Further Reading) for choosing a unitary transformation so that
the transformed set of spin orbitals is in some sense localized, more in line
with our intuitive feeling for chemical bonds.
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3.3 INTERPRETATION OF SOLUTIONS TO THE
HARTREE-FOCK EQUATIONS

In order to solve the Hartree-Fock equations it is necessary to introduce a
basis set and solve a set of matrix equations. Before doing so, however, there
are certain aspects of the eigenvalue equation and its solutions that are
independent of any basis, and it is appropriate to discuss them at this point.

3.3.1 Orbital Energies and Koopmans’ Theorem

For an N-electron system, minimization of the energy of the determinant
|Wo> = |12 " XaXs " * - Xnp leads to an eigenvalue equation f|x,> = &,|x,>
for the N occupied spin orbitals {x,}. The Fock operator has a functional
dependence on these occupied spin orbitals, but once the occupied spin
orbitals are known the Fock operator becomes a well-defined Hermitian
operator, which will have an infinite number of eigenfunctions, i.e.,

f|X1> =8j|Xj> J= 19 2,...,@ (3‘70)

Exercise 3.4 Use the result of Exercise 3.1 to show that the Fock opera-
tor is a Hermitian operator, by showing that f;; = (x| f|x ;> is an element of a

' Hermitian matrix.
|

Each of the solutions | ;> of (3.70) has a spin orbital energy &;. The N
| spin orbitals with the lowest orbital energies are Just/ the spin orbitals
- occupied in |¥op for which we use the indices a, b, .... The remaining
+ infinite number of spin orbitals with higher energies are the virtual or un-
occupied spin orbitals, which we label with the indices r, s, . ... Our main
interest here is to obtain expressions for the orbital energies ¢, and ¢, and to
investigate what physical significance we can attach to these orbital energies.

Multiplying (3.70) by {x,|, shows that the matrix representation of the
Fock operator in the basis of spin orbital eigenfunctions is diagonal with
diagonal elements equal to the orbital energies.

<Xi|f|Xj> = 8j<Xi|Xj> = 8j5ij (3.71)

Using expression (3.16) for the Fock operator, the orbital energies can be
expressed as

&= Qulf D = <wlh + ;(fb — A
= Culhl> + ; |l Ala> = el
= (i) + ; Cib|ib) — (ib|bi)
= (ilh)i> + ; Cib| |ib) 3.72)
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where, from definitions (3.10) and (3.11) of the exchange and coulomb
operators, we have used

QulAdxi> = Cik|jky = [ij|kk] (3.73)
QulHle> = <ik|ki> = [ik|kj] (374
In particular then
N
g, = <alhla) + Y, <ab||ab) (3.75)
b=1
N
g, =<rlhr> + Y, <rb||rb) (3.76)
b=1
Now, since,
aa| |aa) =0 (3.7

we can rewrite these results as

g, = {alhla) + Y, <{ab|ab) — (ab|ba) (3.78)

b+#a

g, = <rlHr) + Y, <rb|rb) — (rb|br) (3.79)
5

Let us examine these last two expressions. The orbital energy ¢, represents
the energy of an electron in the spin orbital |x,>. From (3.78) this energy is
the kinetic energy and attraction to the nuclei ({alh|a)) plus a coulomb
(Cab|ab)) and exchange (— {ab|ba)) interaction with each of the remaining
N — 1 electrons in the N — 1 spin orbitals |y,), where b # a. As we have
seen before, the integral {ab|ba) is nonzero only if the spins of the electrons
in |x,> and |x,) are parallel. In the general spin orbital formulation given
here, we have not specified the spins of the electrons, so the general term
(ab|ba) remains for all electron-electron interactions, even though some
of these integrals will be zero.

The result for ¢, is as might be expected, but the formula (3.79) for the
virtual spin orbital energy ¢, has a different character. It includes the kinetic
energy and nuclear attraction of an electron in |x,), i.e., {r|h|r), as expected,
but includes coulomb ({rb|rb)) and exchange (—(rb |br) interactions with
all N electrons of the Hartree-Fock ground state |[¥,), i.e., interactions with
all N electrons in the spin orbitals { x,,|b =1,2,..., N}. Itisasif an electron
had been added to |¥,) to produce an (N + 1)-electron state and &, rep-
resented the energy of this extra electron. This is exactly the case. We will
return to this point when we describe Koopmans’ theorem. First, we want
to relate the occupied orbital energies ¢, to the total energy E,.
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If we simply add up the orbital energies ¢, of Eq. (3.75) for each of the
N electrons in the ground state |¥,), we get

N N N N
Y e, =) <alhla) + ; (ab| |ab) (3.80)

The correct expectation value E, = {¥,|o#|¥,) for this state, from Eq.
(2.112), for example, is

N 1 N N
Eo=Y <alhla) + EZ ; (ab||ab) (3.81)
It is thus apparent that .
Eo#) ¢, (3.82)

and the total energy of the state | ¥, ) is not just the sum of the orbital energies.
The reason is as follows. The energy ¢, includes coulomb and exchange
interactions between an electron in x, and electrons in all other occupied
spin orbitals (in particular, y,). But ¢, includes coulomb and exchange
interactions between an electron in y, and electrons in all other occupied
spin orbitals (in particular, y,). Thus when we add ¢, and ¢, we include the
electron-electron interactions between an electron in y, and one in y,,
twice. The sum of orbital energies counts the electron-electron interactions
twice. This is the reason for the factor 4 in the correct expression (3.81) for
the total energy E, relative to the sum of orbital energies (3.80).

If the total energy is not the sum of orbital energies what physical sig-
nificance can we attach to orbital energies? The answer is provided by
investigating the process of adding or subtracting an electron to the N-
electron state |Wo)> = [YWo) = [x1x2 " X" xn). Suppose we consider
removing an electron from the spin orbital y. to produce the (N — 1)-
electron single determinant state [NT'W.>=|yi(2 Xec tlewrs T AN
where the remaining N — 1 spin orbitals in |V~ !, are identical to those in
[*¥,>. In second quantization, this would be accomplished by annihilating
an electron in y,, so that to within a sign,

|N° Sy = ac|N‘I‘o) (3.83)
The ionization potential of |[V'¥,) for this process is
IP="-1E —ME, (3.84)

where Y"1E, and E,, are the expectation values of the energy of the two
relevant single determinants.

NEo = (VWo|#|"¥o) (3.85)
NIE, =V ||Vl (3.86)
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Depending from which spin orbital y. we remove an electron, the state
|¥=1¥.> may or may not represent the ground state of the ionized species.
Since [¥~1¥,) is a different state from [Y¥,, one could not in general expect
its optimum spin orbitals to be identical with those of |Y¥,). With our
assumption that the spin orbitals are identical, however, we can calculate
the energy difference between the two states. From the rules of the last
chapter, the energy of a single determinant is

occC 1 0CC oCC

E= z iy + 3 Z ‘j; <ijl i) (3.87)

where the sums go over all spin orbitals occupied in the determinant. Thus
1

NEo =) <alhla) + 3 Y ‘b; {ab||ab) (3.88)

where the indices a, b, . . . refer to the spin orbitals occupied in [V¥,). With
this convention, we have

VB, = 3 Calay +5 T T Cabllaby (389

a¥c a¥c

The ionization potential is the difference between these two results
IP = N—IEC - NEO .

= ety =3 T <abllaby 3 ¥ <abllabd

afb=c} bla =}
= =<y - % Y. <ac||ac) - % ‘bL {cb||eb>
= —{clhlc) - ; G (3.90)

Comparing this with the definition (3.75) of an occupied spin orbital energy,
we see that the ionization potential for removing an electron from y_ is just
the negative of the orbital energy &,

IP=N"1E - NE = —¢, (391)

Thus occupied spin orbital energies in the single determinant approximation
represent the energy (with opposite sign) required to remove an electron
from that spin orbital. Orbital energies ¢, are generally negative and ioniza-
tion potentials are positive.

Exercise 3.5 Show that the energy required to remove an electron from
x. and one from x; to produce the (N — 2)-electron single determinant
[N-2W,,> is —e, — &4 + (cd|ed) — {cd|dc).
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Now let us consider the process of adding an electron to one of the virtual
spin orbitals y, to produce the (N + 1)-electron single determinant |V * !'¥") =
lxx1x2 - * xn)» where again the remaining spin orbitals are identical to
those in |Y¥,). In second quantization, this would be accomplished by
creating an electron in y,

|N+ hpry = aI|N‘Po) (3.92)
The electron affinity of |Y¥,) for this process is
EA = ME, — V*1Er (393)

where ¥ *!E is the energy of the single determinant |V *1¥"),
N+ lEr — <N+ IW'I‘#IN.‘- l\lﬂ') (394)

As in the ionization process, the optimum spin orbitals of the (N + 1)-
electron single determinant will not, in general, be identical with those of
|*¥,>. However, with the assumption that they are identical, the electron
affinity is readily calculated.

Exercise 3.6 Use Eq. (3.87) to obtain an expression for ¥*!E" and then

 subtract it from ME, (Eq. (3.88)) to show that

———— —

NEo — N*1E = —(r|hlr) - 2; <rb||rb)

With the result of the above exercise and Eq. (3.76), we see that the
electron affinity for adding an electron to the virtual spin orbital y, is just
the negative of the orbital energy of that virtual spin orbital, i.e.,

EA =PME,—N*1E = —¢, (3.95)

This result is consistent with our previous observation that ¢, included
interactions with all N other electrons of the ground state‘J"‘l’o) and thus
describes an (N + 1)th electron. If ¢, is negative (ie., if [V*'¥") is more
stable than [¥'¥,>), the electron affinity is positive.

The above results were first obtained by Koopmans. We are now in a
position to state Koopmans’ theorem.

Koopmans’ Theorem Given an N-electron Hartree-Fock single deter-
minant |Y¥,,) with occupied and virtual spin orbital energies ¢, and ¢,, then
the ionization potential to produce an (N — 1)-electron single determinant
|*- 1w, with identical spin orbitals, obtained by removing an electron from
spin orbital y,, and the electron affinity to produce an (N + 1)-electron
single determinant |+ '¥") with identical spin orbitals, obtained by adding
an electron to spin orbital y,, are just —¢, and —¢,, respectively.
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Koopmans’ theorem thus gives us a way of calculating approximate
ionization potentials and electron affinities. This “frozen orbital” approxi-
mation assumes that the spin orbitals in the (N + 1)-electron states, i.e., the
positive and negative ions if [¥'¥,) is a neutral species, are identical with
those of the N-electron state. This approximation neglects relaxation of the
spin orbitals in the (N + 1)-electron states, i.e., the spin orbitals of |"‘I‘o)
are not the optimum spin orbitals for |¥~!'¥,) or |V*!¥"). Optimizing the
spin orbitals of the (N + 1)-electron single determinants by performing a
separate Hartree-Fock calculation on these states would lower the energies
N-1E,and *1E" and thus the neglect of relaxation in Koopmans’ theorem
calculations tends to produce too positive an ionization potential and too
negative an electron affinity. In addition, of course, the approximation of a
single determinant wave function leads to errors, and the correlation effects,
which one obtains in going beyond the Hartree-Fock approximation, will
produce further corrections to Koopmans® theorem results. In particular,
correlation energies are largest for the system with the highest number of
electrons. Therefore, correlation effects tend to cancel the relaxation error
for ionization potentials, but add to the relaxation error for electron affini-
ties. In general, Koopmans’ ionization potentials are reasonable first ap-
proximations to experimental ionization potentials and we shall be discussing
a number of such calculations later in this chapter. Koopmans’ electron
affinities are unfortunately often bad. Many neutral molecules will add an
electron to form a stable negative ion. Hartree-Fock calculations on neutral
molecules, however, almost always give positive orbital energies for all the
virtual orbitals. Electron affinities are considerably more difficult to calcu-
late than ionization potentials and we will not be concerned, to any extent,
with electron affinities in this book.

3.3.2 Brillouin’s Theorem

The Hartree-Fock equation (3.70) produces a set {x,} of spin orbitals. The
single determinant |¥,), formed from the N spin orbitals {y,} with the
lowest orbital energies, is the Hartree-Fock approximation to the ground
state. As discussed in the last chapter, there are many other determinants
that can be formed from the set {y;}. Having derived the form of the Fock
operator, we are now in a position to prove a theorem about a subset of
these determinants. This subset is the set of singly excited determinants |¥7)
obtained from |¥,)> by a single replacement of x, with g, (Fig. 2.7). In a
multideterminantal representation of the exact ground state |®,), it is these
determinants which we might expect, a priori, to give the leading correction
to the Hartree-Fock ground state |\¥,),

|00 = co|¥o) + Y | ¥i> + - (3.96)
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If we consider only the singly excited determinants as corrections, then the
coefficients ¢} are determined from the variational principle by diagonalizing
the Hamiltonian matrix in the basis of the states {¥,, {¥%}}. Consider for
a moment the matrix eigenvalue problem involving one singly excited state

(Pol#|¥o) (Ho AL\ (o _ . (Co
(<‘P£IX’I‘P0> ey \er ) =%\ e (397)

The mixing of the two states depends on the off-diagonal element (¥ o|#|W}).
This matrix element is obtained by using the rules for evaluating matrix
elements between determinants, and the result can be read directly from
Tables 2.5 and 2.6.

(P o|#|YL> = <alhjr) + ; {ab||rb) (3.98)

The right-hand side of this equation can be simplified; as Exercise 3.1 shows,
matrix elements of the Fock operator are given by

l fl> = <ilplj> + ; Cibl | jb> (3.99)

Therefore,
Vol #1W> = x| > (3.100)

The matrix element that mixes singly excited determinants with |¥,) is thus
equal to an off-diagonal element of the Fock matrix. Now, by definition,
solving the Hartree-Fock eigenvalue problem requires the off-diagonal
elements to satisfy {x;|f|x;,> =0, (i # j). One can then say that solving the
Hartree-Fock eigenvalue equation is equivalent to ensuring that [¥,) will
not mix with any singly excited determinants. The lowest solution to (3.97)

is thus
E, 0 1y 1
(5 coperes)o)=E:(o) G100

The Hartree-Fock ground state is in this sense “stable” since it cannot be
improved by mixing it with singly excited determinants. One then expects
doubly excited determinants |73 to provide the leading and most important
corrections to |¥,). This does not mean that there are no singly excited
determinants |¥;) in an exact ground state |®,). They can mix indirectly
with |¥o> through the doubly excited determinants by way of the matrix
elements (W;|5#| W5 and (Wi3|#]¥,). The important result we have just
derived is termed Brillouin’s theorem.

Brillouin’s Theorem Singly excited determinants |¥,)» will not interact
directly with a reference Hartree-Fock determinant |, i.e., (¥ o|5¢| ¥} =O0.

We will have the opportunity to use this theorem many times in later chapters.
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3.3.3 The Hartree-Fock Hamiltonian

Until now the Hartree-Fock approximation has been viewed as an approxi-
mation in which the Hamiltonian is exact but the wave function is approxi-
mated as a single Slater determinant. For later use in the perturbation theory
of Chapter 6, we now preview a different but equivalent view of Hartree-Fock
theory that focuses on the Hamiltonian.

We have not solved the exact electronic Schrédinger equation

H|Do) = 8,|®o> (3.102)

but rather we have used the variational principle to find an approximation
|¥o)> to [®o). We now ask the question, “Is there some approximate N-
electron Hamiltonian and eigenvalue equation that we have solved exactly,
i.e,, is there an approximate Hamiltonian for which |¥,) is an exact eigen-
function?” The answer is “Yes.” The Hartree-Fock Hamiltonian is

N
Ko = -Zl f0) (3.103)

where f(i) is a Fock operator for the ith electron.

Exercise 3.7 Use definition (2.115) of a Slater determinant and the fact
that £, commutes with any operator that permutes the electron labels, to
show that [¥,) is an eigenfunction of #, with eigenvalue Z &,- Why does
#, commute with the permutation operator?

As the above exercise shows, | ¥, is an eigenfunction of a Hartree-Fock
Hamiltonian with an eigenvalue that is not the Hartree-Fock energy E,,
but the sum of orbital energies > ¢,. We can in fact show that any single

a

determinant formed from the set {x;} of eigenfunctions of the Fock operator,
f, is an eigenfunction of ¢, with eigenvalue equal to the sum of the orbital
energies of the spin orbitals included in the determinant. In the context of
perturbation theory, which is extensively discussed in Chapter 6, we have
obtained a complete set of eigenfunctions to an unperturbed Hamiltonian
#,, which can form the basis for a perturbation expansion of the exact
energy,

& =EQ+E +EP+-- (3.104)
The unperturbed zeroth-order energy is just
EQ =Y ¢, (3.105)

where
.mor'l’o) = E%)o)r'l’o) (3.106)
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If
H=Hy+ V (3.107)
then the perturbation # is
V =K — H,
- % Hi)+ .21 z T WU
N N
=2 pRo ~ 3 %) (3.108)

or just the difference between the exact electron-electron interaction and
the sum of the Hartree-Fock coulomb and exchange potentials. We can now
evaluate the Hartree-Fock energy as

Eg = (¥o|#|¥ o) = (¥o|#o|Po> + (Po| ¥ [Wo)
=Y &, + (V|7 |¥o) =EY + EY (3.109)
. where (¥y|#"|¥o> has been defined as the first-order energy in the expan-

sion (3.104) for the exact energy. In Chapter 6 we will primarily be concerned
with finding the second-order energy E{’ and other higher-order energies.

Exercise 3.8 Use expression (3.108) for #°, expression (3.18) for the
Hartree-Fock potential v"*F(i), and the rules for evaluating matrix elements
to explicitly show that (W o|7|¥o> = —3 Y Y (ab||ab) and hence that E{

b

a
cancels the double counting of electron-electron repulsions in EQ) =) ¢,
to give the correct Hartree-Fock energy E,. a

3.4 RESTRICTED CLOSED-SHELL HARTREE-FOCK:
THE ROOTHAAN EQUATIONS

So far in this chapter we have discussed the Hartree-Fock equations from
a formal point of view in terms of a general set of spin orbitals {y;}. We are
now in a position to consider the actual calculation of Hartree-Fock wave
functions, and we must be more specific about the form of the spin orbitals.
In the last chapter we briefly discussed two types of spin orbitals: restricted
spin orbitals, which are constrained to have the same spatial function for
a (spin up) and B (spin down) spin functions; and unrestricted spin orbitals,
which have different spatial functions for « and f spins. Later in this chapter
we will discuss the unrestricted Hartree-Fock formalism and unrestricted
calculations. In this section we are concerned with procedures for calculating
restricted Hartree-Fock wave functions and, specifically, we consider here
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only closed-shell calculations. QOur molecular states are thus allowed to
have only an even number N of electrons, with all electrons paired such that
n = N/2 spatial orbitals are doubly occupied. In essence this restricts our
discussion to closed-shell ground states.? For describing open-shell ground
states we will use the unrestricted formalism of the last section of this chapter.
To describe open-shell excited states we also use unrestricted Hartree-Fock
theory. The restricted open-shell formalism is somewhat more involved than
our restricted closed-shell or unrestricted open-shell formalism, and we do
not describe restricted open-shell Hartree-Fock calculations in this book.
An excellent introduction to such calculations is contained in the book by
Hurley, suggested for further reading at the end of this chapter.

3.4.1 Closed-Shell Hartree-Fock: Restricted Spin Orbitals
A restricted set of spin orbitals has the form
W j(r)a(w)
i X) = 3.110
ueo ‘{nlf,-(r)ﬂ(w) 40

and the closed-shell restricted ground state is

|‘yo> = |1112 CAN-1AND = |¢1$1 oYW '/’N/2$N/2> (3.111)

We now want to convert the general spin orbital Hartree-Fock equation
S (1) = g;x;(1) to a spatial eigenvalue equation where each of the occupied
spatial molecular orbitals {y,|a=1,2,..., N/2} is doubly occupied. The
procedure for converting from spin orbitals to spatial orbitals was described
in Subsection 2.3.5; we must integrate out the spin functions. Let us first
apply this technique to the Hartree-Fock equation

S Dx(x,) = exi(x,) (3.112)

The spin orbital y;(x,) will have either the a or § spin function. Let us assume
a; identical results will be obtained by assuming S,

fx ) 5(r Jo(w) =¢€ j'/’ j(l' Do) (3.113)

where ¢;, the energy of the spatial orbital ; is identical with ¢;, the energy
of the spin orbital x;. Multiplying on the left by a*(w,) and integrating over
spin gives

[fdwl a*(wl)f(xl)a(wl):l ll’j(rl) = sj'l’j(rl) (3.114)

To proceed we must evaluate the left-hand side of (3.114). Let us write the
spin orbital Fock operator as

N
fO) = hey) + X, [d, 2rif(l - Pogdxy) G115
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so that (3.114) becomes

[fda)l a*(wl)f(xl)a(wl)] 'l’j(rl) = [fdwx o*(w)h(r )a(w,) 'l’j(r1)

-
+ I:Z fdah dx, 0¥, xS (X2)rs (1 — Py X Ja(w,) |¥;(ry)

=gy (r,) (3.116)
If we let f(r,) be the closed-shell Fock operator
1) = [do, a*(,)f&x,)a,) (3.117)

" then
|
| S ey) = h(e W (r,) + Z fdw1 dx, a*(w1)x2'(x2)rfz‘xc(x2)a(wl)lﬁ,-(n)

} 4
\
\

~ 3 [[doo, dx, ¥ 1 e ) (e)

=&, ,(r,) (3.118)

where we have performed the integration over dw, in the expression in-
volving h(r,) and used #,, to generate the explicit exchange term. Now, if
we have a closed-shell, the sum over occupied spin orbitals includes an equal
sum over those with the a spin function and those with the # spin function

N N2 Nj2

k Y=Y + ) (3.119)
4 [ T

and therefore

f(ﬁ)'ﬁj(rl) = h(rl)'pj(rl)

N/2
+ Z fdwl dw, dr; a¥(@, W E e (@ )r 2 ¥ @ )a(w;)a(w, ) (r,)
NJ2

+ ; fdw1 dw, dr, a*(wﬂ'ﬁ:(rz)ﬁ*(wz)’le [(r2)B(wy)o(w W (r,)

N/2

=~ Y [doo, dooy dry (@, WD (@) r (8 o0, )0 )

N/2

- Z fdwl dw, dry ¥ W2 E)B @ )ri ¥ (r)B(w )alw )y /r2)

= &Y ry) (3.120)

We can now perform the integrations over dw, and dw,. The last term of
(3.120) disappears because of spin orthogonality. This reflects the fact that
there is only an exchange interaction between electrons of parallel spin. The
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two coulomb terms are equal and thus one obtains

~ NJ2
f("l)'/’j(l'l) = h(l'l)\l’j(l'l) + |2 Z _[dfz 'l’:(l'z)’l_zl'l’c(l'z):l 'l’j(l'l)
:N/2
- Z J“lf Y (r)ry. ) 'l’j(l'z)] Y(ry)
=&Y r,) (.121)

The closed-shell Fock operator thus has the form,
N/2

fe)=he) + Y [dr, 2@ - Porifva) G122

or, equivalently,
S0 =h) + ¥, 27,0) - KD (3.123)
where the closed-shell coulomb and ::xchange operators are defined by
J(1) = [dr, Y2}y, (3129
K (¥(1) = [ [ar, :(2)r;z‘w,(2)] VX6 (3129

These equations are quite analogous to those for spin orbitals, except for
the factor of 2 occurring with the coulomb operator. The sum in (3.122) is,
of course, over the N/2 occupied orbitals {y,}. The closed-shell spatial
Hartree-Fock equation is just

S (1) = ¢,(1) (3.126)

The closed-shell Hartree-Fock energy was derived in Subsection 2.3.5
as an example of the transition from spin orbitals to spatial orbitals. For
the closed-shell determinant, [¥o)> = W ¥, - " VW, Wnj2Wns2)s it S

Eg = (¥o|o#|¥o> =2 (alhla) + ¥ ; 2(aa|bb) — (ab|ba)
a a b

It remains to convert the expression for orbital energies in Eq. (3.72) to the
closed-shell spatial orbital form.

Exercise 3.9 Convert the spin orbital expression for orbital energies

N
& = (bl + Zb) sl Iasy
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to the closed-shell expression
N/2 Nj2

&= (Wil + 3 2(ii|bb) — (ib|bi) = hy + ¥ 20, — K, (3.128)
b b

With the results of this last exercise we now have closed-shell expressions
for most quantities of interest. Let us examine these, for a moment, in the
context of our minimal basis H, model.

c v,

. | i ¥

We can evaluate the total energy by inspection. Each of the two electrons
has kinetic energy plus attraction to the nuclei of hy; = (,|h|y,). In addition
there is the coulomb repulsion between the two electrons J,, = (Y ¥4 |1 ,).
There are no exchange interactions since the two electrons have antiparallel
spins. The Hartree-Fock energy is thus

Eo = 2h11 + Jll (3.129)
This is an agreement with (3.127) since J; = Kj;.
One can evaluate the orbital energies similarly.

To evaluate ¢; we need only add up the interactions of the circled electron.
It has kinetic energy and nuclear attraction h;, and a coulomb interaction
J1; and, therefore,

81 =h11 +J11 (3.130)

We could do the same for any occupied orbital energy. For virtual orbitals,
as we have seen before, the orbital energy corresponds to the interactions of
an extra (N + 1)th electron, in agreement with Koopmans’ theorem. For
the minimal basis model, we must keep the two electrons of | ¥, and evaluate

the interactions of the extra electron in the virtual orbital y,, as shown
below.
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The circled electron has kinetic energy and nuclear attraction h,,. It has two
coulomb interactions J,,, with each of the other two electrons, and an
exchange interaction — K, ,, with the electron of parallel spin. Thus

82=h22+2J12—K12 (3131)

Both of the results are in agreement with the general expression for closed-
shell orbital energies obtained in Exercise 3.9.

3.4.2 Introduction of a Basis: The Roothaan Equations

Now that we have eliminated spin, the calculation of molecular orbitals
becomes equivalent to the problem of solving the spatial integro-differential
equation

S Wiry) = ei(ry) (3.132)

One might attempt to solve this equation numerically; numerical solutions
are common in atomic calculations. No practical procedures are presently
available, however, for obtaining numerical solutions for molecules. The
contribution of Roothaan* was to show how, by introducing a set of known
spatial basis functions, the differential equation could be converted to a set
of algebraic equations and solved by standard matrix techniques.

We, therefore, introduce a set of K known basis functions {¢“(r)| u=1,
2,...,K} and expand the unknown molecular orbitals in the linear ex-
pansion

K
V=) Cud, i=12...,K (3.133
u=1

If the set {¢,} was complete, this would be an exact expansion, and any
complete set {¢,} could be used. Unfortunately, one is always restricted, for
practical computational reasons, to a finite set of K basis functions. As such,
it is important to choose a basis that will provide, as far as is possible, a
reasonably accurate expansion for the exact molecular orbitals {,}, partic-
ularly, for those molecular orbitals {i,} which are occupied in |¥,) and
determine the ground state energy E,. A later section of this chapter discusses
the questions involved in the choice of a basis set and describes some of the
art of choosing a basis set. For our purposes here, we need only assume that
{¢,} is a set of known functions. As the basis set becomes more and more
complete, the expansion (3.133) leads to more and more accurate represen-
tations of the “exact” molecular orbitals, i.e., the molecular orbitals converge
to those of Eq. (3.132), the true eigenfunctions of the Fock operator. For any
finite basis set we will obtain molecular orbitals from the truncated expansion
(3.133), which are exact only in the space spanned by the basis functions
(6.},

From (3.133), the problem of calculating the Hartree-Fock molecular
orbitals reduces to the problem of calculating the set of expansion coefficients
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C.i- We can obtain a matrix equation for the C,; by substituting the linear
expansion (3.133) into the Hartree-Fock equation (3.132). Using the index
v, gives

S} Cud 1) =&Y, Cuip (1) (3.139)

By multiplying by ¢¥(1) on the left and integrating, we turn the integro-
differential equation into a matrix equation,

Y Cui [dr, $2OfGMD) =&, T, Cyy [dr, o30SL)  (3139)

We now define two matrices.
1. The overlap matrix S has elements

Sw= [ dr, 216D (3.136)

and is a K x K Hermitian (although usually real and symmetric) matrix.
The basis functions {¢,}, although assumed to be normalized and linearly
independent, are not in general orthogonal to each other and, hence, overlap
with a magnitude 0 < [S,,| < 1, i.e, the diagonal elements of S are unity and
the off-diagonal elements are numbers less than one in magnitude. The sign
of the off-diagonal elements depends on the relative sign of the two basis
functions, and their relative orientation and separation in space. If two
off-diagonal elements approach unity (in magnitude) i.e., approach complete
overlap, then the two basis functions approach linear dependence. Because
the overlap matrix is Hermitian, it can be diagonalized by a unitary matrix,
as we will have occasion to do, later. The eigenvalues of the overlap matrix
can be shown to be necessarily positive numbers and, hence, the overlap
matrix is said to be a positive-definite matrix. Linear dependence in the basis
set is associated with eigenvalues of the overlap matrix approaching zero.
The overlap matrix is sometimes called the metric matrix.
2. The Fock matrix F has elements

Fu = [dr, $20f(D) (3.137)

andisalso a K x K Hermitian (although usually real and symmetric) matrix.
The Fock operator f(1) is a one-electron operator, and any set of one-electron
functions defines a matrix representation of this operator. We have pre-
viously discussed matrix elements of the Fock operator with spin orbitals.
The Fock matrix F is the matrix representation of the Fock operator with
the set of basis functions {¢,}.

With these definitions of F and S we can now write the integrated
Hartree-Fock equation (3.135) as

Y FuCu=6YS,Ci i=12...,K (3.138)
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These are the Roothaan equations, which can be written more compactly as
the single matrix equation

FC =SCs (3.139)
where C is a K x K square matrix of the expansion coefficients C,;
Cii Cip 0 Cyx
C= (.321 (.722 Tt (-jzx (3.140)
Cxi Cka - Cik
and & is a diagonal matrix of the orbital energies &;,
€1
_ €2 0
=1 o . (3.141)
€k

Note that from (3.133) and (3.140) it is the columns of C which describe the
molecular orbitals, i.e., the coefficients describing Y, are in the first column of
C, those describing ¥/, are in the second column of C, etc.

Exercise 3.10 Show that C'SC = 1. Hint: Use the fact that the molecular
orbitals {y;} are orthonormal.

At this point the problem of determining the Hartree-Fock molecular
orbitals {y;} and orbital energies ¢; involves solving the matrix equation
FC = SCe. To proceed, however, we need an explicit expression for the
Fock matrix. It is first of all necessary, however, to introduce the concept
of a density matrix.

3.4.3 The Charge Density

If we have an electron described by the spatial wave function y(r), then the
probability of finding that electron in a volume element dr at a point r is
|[/,(r)|? dr. The probability distribution function (charge density) is |y, (r)|*.
If we have a closed-shell molecule described by a single determinant wave
function with each occupied molecular orbital ¥/, containing two electrons,
then the total charge density is just

Nj2

p() =23 Wr)? (3.14)

such that p(r)dr is the probability of finding an electron (any electron) in
dr atr. The integral of this charge density is just the total number of electrons,

Nj2 Nj2

[arpm =2 [arlymPP=2% 1=N (3.143)
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For a single determinant, these equations show that the total charge density
is just a sum of charge densities for each of the electrons.

N
Exercise 3.11 Use the density operator p(r) = Y, d(r; — r), the rules for
i=1

evaluating matrix elements in Chapter 2, and the rules for converting from
spin orbitals to spatial orbitals, to derive (3.142) from p(r) = {'¥,|5(r)| ¥,

Let us now insert the molecular orbital expansion (3.133) into the
expression (3.142) for the charge density,
N/2

pr) =2 3 YIEW,(r)

N/2

=23 Y CLo¥m) Y Cudyr)

N/2
-y [z > c,wc:a] 6830

=Y Pudu0)d3() (3.144)

where we have defined a density matrix or, as it is sometimes called, a charge-
density bond-order matrix
N/2

P,=2Y C.C% (3.145)

From (3.144), given a set of known basis functions {¢,}, the matrix P specifies
completely the charge density p(r). It is directly related to the expansion
coefficients C by (3.145), and we can characterize the results of closed-shell
Hartree-Fock calculations either by the C,; or by the P,,,.

Exercise 3.12 A matrix A is said to be idempotent if A2 = A. Use the
result of Exercise 3.10 to show that PSP = 2P, i.e., show that P would be
idempotent in an orthonormal basis.

Exercise 3.13 Use the expression (3.122) for the closed-shell Fock
operator to show that

f(xy) = h(r,) + v"¥(r,)

1
=he) +53 P l:_rdl'z $2(e:)(2 - wlz)r;;qn(rz)] (3.146)

The result of the above exercise expresses the Fock operator in terms of
the density matrix. We can use this expression to indicate in an intuitive way
how the Hartree-Fock procedure operates. We first guess a density matrix
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P, i.e., we guess the charge density p(r) describing the positions of the elec-
trons. Later we will say something about how to obtain such a guess. We
then use this charge density to calculate an effective one-electron potential
MF(r,) for the electrons according to (3.146). We thus have an effective one-
electron Hamiltonian (the Fock operator), and we can solve a one-electron
Schrodinger-like equation to determine the states {y;} of an electron in the
effective potential. The new one-electron states (molecular orbitals ;) can
then be used to obtain a better approximation to the density, using (3.142),
for example. With this new charge density we can calculate a new Hartree-
Fock potential and repeat the procedure until the Hartree-Fock potential
(and, consequently, an effective electrostatic field) no longer changes, ie,
until the field which produced a particular charge density (by solving a
one-electron Schrodinger-like equation, the Hartree-Fock eigenvalue equa-
tion) is consistent (identical) with the field which would be calculated from
that charge density (using (3.146)). This is why the Hartree-Fock equations
are commonly called the self-consistent-field (SCF) equations. This is a way
of viewing the physics involved in solving the Roothaan equations. To return
to the actual algebraic procedure, we need an explicit expression for the
Fock matrix F.

3.4.4 Expression for the Fock Matrix

The Fock matrix F is the matrix representation of the Fock operator

Nj2
£ = k1) + ¥ 27,0 = K1) (3.147)
in the basis {¢,}, i.e,,
Fu = [dr, g2 (1)
Nj2

= [dr, g20OMDGM) + X [dr, $HO[20.01) ~ K W)]0)

Nj2

=H + Y 2(uv|aa) — (pa|av) (3.148)
where we have defined a core-Hamiltonian matrix
Here = [dr, $2(1)h(1),(1) (3.149)

The elements of the core-Hamiltonian matrix are integrals involving the
one-electron operator h(1), describing the kinetic energy and nuclear attrac-
tion of an electron, i.e.,
1 Z
h(1)= -=V3 -y 4 __ .
W=-3V-2 Ry (3150

A
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Calculating the elements of the core-Hamiltonian matrix thus involves
the kinetic energy integrals

T, = [dr, g2)[-4v318,(1) (3.151)

- and the nuclear attraction integrals

i = [lar, 201 [—Z —f‘R—] $.1) (3152
A

Ir, A|

H::‘t;re = Tnv + V::c' (3153)

Given a particular basis set {¢,}, the integrals of T and V"' need to be
evaluated and the core-Hamiltonian matrix formed. The core-Hamiltonian
matrix, unlike the full Fock matrix, needs only to be evaluated once as it
remains constant during the iterative calculation. The calculation of kinetic
energy and nuclear attraction integrals is described in Appendix A.

To return to expression (3.148) for the Fock matrix, we now insert the
linear expansion for the molecular orbitals (3.133) into the two-electron
terms to get

N/2

F,=HS+ ) Y C,.Ch[2(uv|ad) — (ui|ov)]

a io

= HS™® + ; P, [(uv|6l) — 3(ui|ov)]

A = H:‘:’e + G”v (3.154)

where G,, is the two-electron part of the Fock matrix. This is our final
expression for the Fock matrix. It contains a one-electron part H**"* which
is fixed, given the basis set, and a two-electron part G which depends on
the density matrix P and a set of two-electron integrals

(wv]d0) = [dr, dr; $31)6 (1)1 $32)04(2) (3.155)

Because of their large number, the evaluation and manipulation of these
two-clectron integrals is the major difficulty in a Hartree-Fock calculation.

Exercise 3.14 Assume that the basis functions are real and use the
symmetry of the two-electron integrals [(uv|ds) = (vulis) = (Aa|uv), etc.]
to show that for a basis set of size X = 100 there are 12,753,775 = O(K*/8)
unique two-electron integrals.

Because the Fock matrix depends on the density matrix,
F = F(P) (3.156)
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or, equivalently, on the expansion coefficients,
F = F(C) (3.157)
the Roothaan equations are nonlinear, i.e.,

F(C)C =SCs (3.158)

and they will need to be solved in an iterative fashion. Before considering
how such iterations should proceed, we need to discuss the solution of the
matrix equation

FC = SCs (3.159)

at each step in the iteration. If S were the unit matrix (i.e., if we had an ortho-
normal basis set), then we would have

FC=Ce (3.160)

and Roothaan’s equations would just have the form of the usual matrix
eigenvalue problem, and we could find the eigenvectors C and eigenvalues
¢ by diagonalizing F. Because of the nonorthogonal basis, we need to re-
formulate the eigenvalue problem FC = SCe.

3.4.5 Orthogonalization of the Basis

The basis sets that are used in molecular calculations are not orthonormal
sets. The basis functions are normalized, but they are not orthogonal to each
other. This gives rise to the overlap matrix in Roothaan’s equations. In order
to put Roothaan’s equations into the form of the usual matrix eigenvalue
problem, we need to consider procedures for orthogonalizing the basis
functions.

If we have a set of functions {¢,} that are not orthogonal, i.e.,

[ar br000,0) = 5, (3.161)

then it will always be possible to find a transformation matrix X (not unitary)
such that a transformed set of functions {¢,} given by

¢, =YX, 6, p=12....K (3.162)

do form an orthonormal set, i.e.,

Jar i) = 5,0 (.16
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To derive the properties of X, we substitute the transformation (3.162) into
(3.163) to get

[ar gr0000) = [ar [}; X3, :(r)] [z x,v¢,(r)]
= T L X3, [dr o108, 0.,

=YY X18:..X,, =0, (3.164)
A o

This last equation can be written as the matrix equation
X'SX =1 (3.165)

and defines the relation that the matrix X must satisfy if the transformed
orbitals are to form an orthonormal set. As we shall see later, X must also
be nonsingular, i.e., it must possess an inverse X~ 1. We now proceed to show
how to obtain two different transformation matrices X. Since S is Hermitian
it can be diagonalized by a unitary matrix U,

U'SU=s (3.166)

where s is a diagonal matrix of the eigenvalues of S.

Exercise 3.15 Use the definition of S,, = | dr ¢*¢, to show that the
eigenvalues of S are all positive. Hint: consider ) S,,c, = s;c,, multiply by
c* and sum, where ¢' is the ith column of U. "’

There are two ways of orthogonalizing the basis set {¢,} in common use.
The first procedure, called symmetric orthogonalization, uses the inverse
square root of S for X

X =§-12 = ys~ 12yt (3.167)

If you will recall from the discussion of functions of a matrix in Chapter 1,
we can form S™1/2 by diagonalizing S to form s, then taking the inverse
square root of each of the eigenvalues to form the diagonal matrix s~1/2 and
then “undiagonalizing” by the transformation in (3.167). If S is Hermitian
then S™1/2 is also Hermitian. Substituting (3.167) into (3.165),

S-126§-1/2 = §-1/2§1/2 = §° = 1 (3.168)

shows that X = §~1/2 js indeed an orthogonalizing transformation matrix.
Since the eigenvalues of S are all positive (Exercise 3.15), there is no difficulty
in (3.167) of taking square roots. However, if there is linear dependence or
near linear dependence in the basis set, then some of the eigenvalues will
approach zero and (3.167) will involve dividing by quantities that are nearly
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zero. Thus symmetric orthogonalization will lead to problems in numerical
precision for basis sets with near linear dependence.

A second way of obtaining an orthonormal set of basis functions is called
canonical orthogonalization. It uses the transformation matrix

X =Us"12 (3.169)

that is, the columns of the unitary matrix U are divided by the square root
of the corresponding eigenvalue

Xy =Uyls;” (3.170)
Substituting this definition of X into (3.165) gives
X'SX = (Us " 12)!1SUs ™ 1/2 = s~ 12USUs 12 =g V2%gs~ 12 =1 (3.171)

showing that X = Us ™1/ is also an orthogonalizing transformation matrix,
It appears, from (3.170), that this orthogonalization procedure will also
entail difficulties if there is linear dependence in the basis set, i.e., if any of
the eigenvalues s; approach zero. We can circumvent this problem with
canonical orthogonalization, however. In the matrix eigenvalue problem
(3.166), we can order the eigenvalues in any way in the diagonal matrix s,
provided we order the columns of U in the same way. Suppose we order the
positive eigenvalues s; in the order s, > s, > s3 > - - . Upon inspection we
may decide that the last m of these are too small and will give numerical
problems. We can then use as a transformation matrix, the truncated
matrix X,

Um/si/2 Ul.z/sélz e Ul.K-m/sll(/Zm
~ U,,/st? U,,/si? -+ U,,_ [sk?
Ux.l/silz Uk,z/-"'é/2 Tt UK,K-m/slltlzm

where we have eliminated the last m columns of X to give the K x (K — m)
matrix X. With this truncated transformation matrix, we get only K —m
transformed orthonormal basis functions

K
o=y X, u=12...,K-m (3.173)
v=1

These would span exact]y the same region of space as the original set,
provided the eliminated eigenvalues were exactly zero. In practice, one often
finds linear dependence problems with eigenvalues in the region s; < 1074
(depending, of course, on the machine precision of the calculation). In
eliminating the columns with these eigenvalues one is “throwing away” part
of the basis set, but only a very small part.

One way of dealing with the problem of a nonorthogonal basis set would
thus be to orthogonalize the functions {¢,} to obtain the transformed basis
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functions {¢,} and work with these orthonormal functions throughout. This
would eliminate the overlap matrix S from Roothaan’s equations, which
could then be solved just by diagonalizing the Fock matrix. This would
mean, however, that we would have to calculate all our two-electron integrals
using the new orbitals or else transform all the old integrals (uv|Ao) to set
(u'v |l’a'). In practice this is very time consuming, and we can solve the same
problem in a more efficient way. Consider a new coefficient matrix C' related
to the old coefficient matrix C by

C=X"'C cC=XC (3.174)

where we have assumed that X possesses an inverse. This will be the case if
. we have eliminated linear dependencies. Substituting C = XC' into the
' Roothaan equations gives

| FXC = SXC’ (3.175)
. Multiplying on the left by X' gives
| X'FX)C’ = (X'SX)C’s (3.176)
If we define a new matrix F' by
F' = X'FX (3.177)
and use (3.1695), then
FC =C'¢ (3.178)

These are the transformed Roothaan equations, which can be solved for
» €' by diagonalizing F'. Given C', then C can be obtained from (3.174).
Therefore, given F, we can use (3.177), (3.178), and (3.174) to solve the
Roothaan equations FC = SCe for C and &. The intermediate primed matrices
are just the Fock matrix and expansion coefficients in the orthogonalized
basis, i.e.,

K
Vvi=Y Cud, i=12,...,K (3.179)
ua=1

Fo = [dr, $70)£(0)01) (3.180)

Exercise 3.16 Use(3.179),(3.180), and (3.162) to derive(3.174) and (3.177).

3.4.6 The SCF Procedure

With the background of the previous sections we are now in a position to
describe the actual computational procedure for obtaining restricted closed-
shell Hartree-Fock wave functions for molecules, i.e., wave functions |‘Po).
Some authors restrict the term Hartree-Fock solution to one that is at the
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Hartree-Fock limit, where the basis set is essentially complete, and use the
term self-consistent-field (SCF) solution for one obtained with a finite,
possibly small, basis set. We use the terms Hartree-Fock and SCF inter-
changeably, however, and specifically refer to the Hartree-Fock limit when
necessary. The SCF procedure is as follows:

1. Specify a molecule (a set of nuclear coordinates {R ,}, atomic numbers
{Z 4}, and number of electrons N) and a basis set {¢,}.

2. Calculate all required molecular integrals, S,,, HSY®, and (uv|46).

3. Diagonalize the overlap matrix S and obtain a transformation matrix X

from either (3.167) or (3.169).

Obtain a guess at the density matrix P.

Calculate the matrix G of equation (3.154) from the density matrix P

and the two-electron integrals (uv|0).

Add G to the core-Hamiltonian to obtain the Fock matrix F = H*" + G.

Calculate the transformed Fock matrix F' = X'FX.

Diagonalize F’ to obtain C' and &.

Calculate C = XC'.

Form a new density matrix P from C using Eq. (3.145).

Determine whether the procedure has converged, i.e., determine whether

the new density matrix of step (10) is the same as the previous density

matrix within a specified criterion. If the procedure has not converged,

return to step (5) with the new density matrix.

12. If the procedure has converged, then use the resultant solution, repre-
sented by C, P, F, etc., to calculate expectation values and other quantities
of interest.

w A

OO X

WS

We will describe the calculation of expectation values like the energy, dipole
moment, etc., and other quantities of interest like population analyses shortly
(Subsection 3.4.7) but let us first consider some of the practical questions
involved in each of the twelve steps.

Within the Born-Oppenheimer approximation, what we have done in
the above procedure is to determine an electronic wave function [¥,) (and
hence an electronic energy E,) for a collection of N electrons in the field of
a set of M point charges (the M nuclei with charges Z,). By adding the clas-
sical nuclear-nuclear repulsion to the electronic energy we will have a total
energy as a function of a set of nuclear coordinates {R ,}. By repeating the
calculation for different nuclear coordinates we can then explore the potential
energy surface for nuclear motion. A common calculation is to find the set
{R,} which minimize this total energy; this is a calculation of the equilibrium
geometry of a molecule. The procedure is valid for any collection of point
charges. In particular, “supermolecule” calculations, which use a set of
nuclear charges representative of more than one molecule, are common for
exploring, for example, intermolecular forces.




THE HARTREE-FOCK APPROXIMATION 147

Having chosen a set of nuclear coordinates, the calculation of a restricted
closed-shell single determinant wave function is then completely specified
by the set of basis functions {¢,}. As such, this is an example of an ab initio
calculation which makes no approximation to the integrals or the electronic
Hamiltonian, but is completely specified by the choice of a basis set and the
coordinates of the nuclei. The choice of a basis set is more of an art than a
science. One is obviously limited by computer facilities, budget, etc. to a
rather small, finite set of functions. One must, therefore, be rather judicious
in the choice of a basis set. Only Slater- and Gaussian-type functions are
currently in common use. If one uses a very small set of functions per atom,
then Slater-type functions give definitely superior energies. As the number of
functions per atom increases, the clear cut superiority of Slater-type functions
is somewhat diminished. As well as the ability of the basis set to span the
function space, however, one has to consider, for practical reasons, the time
required to evaluate molecular integrals. Most polyatomic calculations now
use Gaussian orbitals because of the speed with which integrals can be
evaluated, and in this book we will emphasize Gaussian basis functions.
Basis functions are discussed in Section 3.6 of this chapter, and the 1s STO-3G
basis is discussed in Subsection 3.5.1, prior to its use in model calculations
on H, and HeH".

Having defined a basis set, one then needs to calculate and store a
number of different types of integrals. Appendix A describes molecular
integral evaluation using Gaussian basis functions; we will only mention a
few pertinent points here. The overlap integrals and the one-electron integrals
that are needed for the core-Hamiltonian and one-electron expectation
values, described later, are relatively trivial compared to the two-electron
repulsion integrals, primarily because of the much smaller number of one-
electron integrals. The major difficulty of a large calculation is the evaluation
and handling of large numbers of two-electron integrals. If there are K basis
functions, then there will be of the order of K*%/8 (see Exercise 3.14) unique
two-electron integrals. These can quickly run into the millions even for small
basis sets on moderately sized molecules. The problem is not quite this bad
since many integrals will be effectively zero for large molecules, as the
distance between basis functions becomes large. A number of integrals may
also be zero because of molecular symmetry. There will almost always be,
however, too many two-electrons integrals to store them all in main computer
memory. One common procedure is to store all nonzero integrals in random
order on an external magnetic disk or tape, associating with each integral a
label identifying the indices y, v, 4, and .

In the last subsection we described two ways of orthogonalizing the
basis set or deriving a transformation X, which enables one to solve
Roothaan’s equations by a diagonalization. The use of X = S§71/2 is con-
ceptually simple, and only in unusual situations, where linear dependence
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in the basis set is a problem, does one need to use canonical orthogonaliza-
tion. With canonical orthogonalization, columns of X = Us™!/2 can just be
dropped to give a rectangular matrix. If m columns of X are deleted, one
will effectively be using a basis set of size K — m and one will obtain K —m
molecular orbitals ¥, i.e., F' will be a (K — m) x (K — m) matrix and C' will
be a K x (K — m) matrix, with columns describing the K — m molecular
orbitals in terms of the original K basis functions.

The simplest possible guess at the density matrix P is to use a null (zero)
matrix. This is equivalent to approximating F as H*" and neglecting all
electron-electron interactions in the first iteration. This is a very convenient
way of starting the iteration procedure. It corresponds to approximating
the converged molecular orbitals by those describing a single electron in the
field of the nuclear point charges. The molecular orbitals for the N-electron
molecule may be quite different from those for the corresponding one-
electron molecule, however, and the SCF procedure will often not converge
with the core-Hamiltonian as an initial guess to the Fock matrix. A semi-
empirical extended Hiickel type calculation, with an “effective” F, is often
used for an initial guess at the wave function and, commonly, provides a
better guess than just using the core-Hamiltonian. There are clearly many
ways one could generate an initial guess.

The major time-consuming part of the actual iteration procedure is the
assembling of the two-electron integrals and density matrix into the matrix
G in step (5). If the integrals are stored in random order with associated
labels on an external device, then as they are read into main memory one
uses the label, i.e., the indices 4, v, 4, and ¢ identifying the integral, to deter-
mine which elements of the density matrix to multiply by and to which ele-
ments of the G matrix the products must be added, according to the
expression for the G matrix given by Eq. (3.154).

In most calculations, the matrix operations in steps (6) to (10) are not
time consuming relative to the formation of the G matrix, provided one uses
an efficient diagonalization procedure.

Because the Roothan equations are nonlinear equations, the simple
iteration procedure we have outlined here will not always converge. It may
oscillate or diverge, possibly because of a poor initial guess. If it oscillates,
averaging successive density matrices may help. If it does converge, it may
do so only slowly. With two or more successive density matrices, various
extrapolation procedures can be devised. Convergence problems are not
unusual, but also are not a major problem for many calculations. The iterative
procedure we have described is perhaps the simplest procedure one might
try, but it also is somewhat naive. A number of other techniques have been
suggested for ensuring or accelerating convergence to the SCF solution.

One, of course, requires a criterion for establishing convergence, and it
is not uncommon simply to observe the total electronic energy of each
iteration and require that two successive values differ by no more than a
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small quantity . A value of 6 = 10~ Hartrees is adequate for most purposes.
We will show shortly that the energy of each iteration can be calculated
without due expense. Alternatively, one might require convergence for
elements of the density matrix, by requiring the standard deviation of succes-
sive density matrix elements, i.e., the quantity

1/2
|k 2 30 - ]
nov

to be less than d. A value of 6 = 10~ % for the error in the density matrix
will usually give an error in the energy of less than 10~ % Hartrees.

We have only been able to touch on a few aspects of the SCF procedure.
Research efforts by many groups and large numbers of man-years of pro-
gramming have gone into the large computer programs, which are currently
available, for performing ab initio SCF calculations.

3.4.7 Expectation Values and Population Analysis

Once we have a converged value for the density matrix, Fock matrix, etc.,
there are a number of ways we might use our wave function |¥,) or analyze
the results of our calculation. Only some of the more common quantities
will be discussed.

The eigenvalues of F' are the orbital energies ¢;. As we discussed when
describing Koopmans’ theorem, the occupied orbital energies ¢, constitute
a prediction of ionization potentials and the virtual orbital energies ¢, con-
stitute a prediction of electron affinities. The values of —¢, are commonly a
" reasonable approximation to the observed ionization potentials, but —e¢, is
usually of little use, even for a qualitative understanding of electron affinities.

The total electronic energy is the expectation value E, = (¥ o|#|¥,)
and, as we have seen a number of times now, it is given by

N/2 N/2 Nj2

Eo = 2 Z haa + Z Z 2Jab - Kab (3-181)
a a b

With definition (3.147) of the Fock operator, we have
N/2

€a=Jfua=ha+ D 22— Ku (3.182)
b
and, therefore, we can write the energy as
N/2 N/2
Eo=} (huat fidd = X (hoy + &) (3.183)

This is a convenient result; if we substitute the basis function expansion
(3.133) for the molecular orbitals into this expression, we obtain a formula
for the energy, which is readily evaluated from quantities available at any
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stage of the SCF iteration procedure, i.e.,

1
E,= 3 Z Z P, (HZ*+ F,) (3.184)
v

Exercise 3.17 Derive Equation (3.184) from (3.183)

If E, is calculated from (3.184) using the same matrix P as was used to
form F, then E, will be an upper bound to the true energy at any stage of
the iteration and will usually converge monotonically from above to the
converged result. If one adds the nuclear-nuclear repulsion to the electronic
energy E, one obtains the total energy E,,

YAV A
Etol=E0+Z Z —AF

A B>A4 RAB

(3.185)

This is commonly the quantity of most interest, particularly in structure deter-
minations, because the predicted equilibrium geometry of a molecule occurs
when E,, is a minimum.

Most of the properties of molecules that one might evaluate from a
molecular wave function, such as the dipole moment, quadrupole moment,
field gradient at a nucleus, diamagnetic susceptibility, etc., are described by
sums of one-electron operators of the general form

N
i=1

where h(i) is not necessarily the core-Hamiltonian here, but any operator
depending only on the coordinates of a single electron. From the rules for

matrix elements, expectation values for such operators will always have the
form

N/2
(01 = (¥ol04|¥o) = X Walhlyo) = X Po(vlh|w) (3.187)

so that, in addition to the density matrix, we need only evaluate the set of
one-electron integrals (u[h|v) to calculate one-electron expectation values.
We will use the dipole moment to illustrate such a calculation.

The classical definition of the dipole moment of a collection of charges
g; with position vectors r; is

i = ; ar, (3.188)

The corresponding definition for a quantum mechanical calculation on a

molecule is
A

N
-~ Yy
i=1
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where the first term is the contribution (quantum mechanical) of the electrons,
of charge —1, and the second term is the contribution (classical) of the
nuclei, of charge Z,, to the dipole moment. The electronic dipole operator

is —Y i, I;, a sum of one-electron operators. Therefore, using (3.187), we
have

ji=-=YY P,0w+ ; Z.R, (3.190)

this is a vector equation with components (for example the x component)
given by
ﬂx = _z Z P“v(VIXIﬂ) + z ZAXA (3.191)
H v A

and to calculate the dipole moment we need in addition to P only the dipole
integrals

Ovfxl) = [dr, $3@)x,8,w,) (3.192)
with corresponding values for the y and z components.
The charge density
p(®) =3 ) P,,¢, @} (3.193)
H v

representing the probability of finding an electron in various regions of
space, is commonly pictured by contour maps for various planes drawn
through the molecule. There is no unique definition of the number of electrons
to be associated with a given atom or nucleus in a molecule, but it is still
sometimes useful to perform such population analyses. Since

N/2

N=2Y [ay,m (3.194)

divides the total number of electrons into two electrons per molecular orbital,
by substituting the basis expansion of Y, into (3.194), we have

N=YYP,S, =) (PS),, =trPS (3.195)
BV u

and it is possible to interpret (PS),, as the number of electrons to be asso-
ciated with ¢,. This is called a Mulliken population analysis. Assuming the
basis functions are centered on atomic nuclei, the corresponding number of
electrons to be associated with a given atom in a molecule are obtained by
summing over all basis functions centered on that atom. The net charge
associated with an atom is then given by

qa = ZA - ZA (Ps)mt (3'196)

where Z , is the charge of atomic nucleus A4; the index of summation indicates
that we only sum over the basis functions centered on A.
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The definition (3.195) is by no means unique. Since tr AB = tr BA,
N =) (SPS'™9),, (3.197)
"

for any a. With o = 1/2, we have
N =) (S'?PS'?),, =Y P,, (3.198)
M ®

where we can show that P’ is the density matrix in terms of a symmetrically
orthogonalized basis set,

pr) =3, Y. P, $u(r)d,(r) (3.199)
$.1) =Y. (S7'72),,0,r) (3.200)

The diagonal elements of P’ are commonly used for a Liwdin population
analysis
qa = ZA - Z (Sl/zPSl/z)uu (3°201)

neA

Exercise 3.18 Derive the ﬁght-hand side of Eq. (3.198), i.e., show that
o = 1/2 is equivalent to a population analysis based on the diagonal elements
of P

None of these population analysis schemes is unique, but they are often
useful when comparing different molecules using the same type of basis set
for each molecule. The basis sets must be “balanced” as can be illustrated
by a simple example. It is possible to have a complete set of basis functions
by placing them all at onle center, on oxygen, for example, in an H,O cal-
culation. A population analysis would then suggest that the H atoms in water
have a charge of +1 and that all the electrons reside on the oxygen. This
example makes it obvious that care must be used in assigning physical
significance to any population analysis.

3.5 MODEL CALCULATIONS ON H, AND HeH"*

We have discussed and will subsequently discuss a number of formal mathe-
matical procedures associated with solutions to the many-electron problem.
The ideas and concepts that we are presenting may appear to be rather
formidable and difficult to the uninitiated. With only a formal presentation,
it is unlikely that this situation would be radically altered. We want, for the
reader’s benefit, to avoid the burden of endless formalism, without hint of
application. We particularly feel that what appears at the outset as a some-
what obscure formal theory is usually made clear by application to a simple,
but nevertheless realistic, model system. In this section we apply the closed-
shell Hartree-Fock procedure to the model systems H, and HeH™*.
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The two-electron molecules H, and HeH™ are prototypes for homo-
nuclear and heteronuclear diatomic molecules. We will consider both mole-
cules in the approximation of a minimal basis set, iec., a basis set {¢,}
consisting of only two functions, one on each nucleus. The limitation of these
models is only in the basis set (and the usual assumption of a nonrelativistic,
Born-Oppenheimer electronic Hamiltonian). Larger basis sets would lead to
correspondingly more accurate results. Since both molecules are simple two-
electron systems, essentially exact calculations, corresponding to an infinite
basis set, will be available for comparison with our very approximate cal-
culations. Before describing these calculations, however, we need to intro-
duce the basis set that we will be using.

3.5.1 The 1s Minimal STO-3G Basis Set

In Section 3.6 we will describe basis sets for the general polyatomic molecule
calculation, including s, p, and d-type basis functions. Here we introduce
some of the basic ideas involved in the choice of a basis set, by describing
basis functions of the 1s type, i.e., those that will be used in our simple cal-
culations on H, and HeH *. Better calculations would use many 1s functions
and/or 2p, 3d, etc. functions in the basis set {¢,}. The extension of most of
the concepts introduced here, for 1s functions, to the general case is fairly
straightforward.

In a strictly mathematical sense many different kinds of basis set functions
¢, could be used. A variety of choices have been suggested but only two
types of basis functions have found common use. The normalized 1s Slater-
type function, centered at R 4, has the form

PTC, 1 — Ry = ((P/n)2eClr R4l (3.202)

where { is the Slater orbital exponent. The normalized 1s Gaussian-type func-
tion, centered at R ,, has the form

¢St (@, r — Ry) = (2a/m)>/4e~2lr~Ra’ (3.203)

where a is the Gaussian orbital exponent. The 2p, 3d, etc. Slater and Gaussian
functions are generalizations of (3.202) and (3.203) that have polynomials in
the components of r — R, (x — X ,, etc.) multiplying the same exponential
(e™¥) or Gaussian (e~*") fall-off. The orbital exponents, which are positive
numbers larger than zero, determine the diffuseness or “size” of the basis
functions; a large exponent implies a small dense function, a small exponent
implies a large diffuse function. The major differences between the two func-
tions e"* and e~*"* occur at r = 0 and at large r. At r = 0, the Slater function
has a finite slope and the Gaussian function has a zero slope,

[d/dr e %], # 0 (3.204)
[d/dre=*],.0 =0 (3.205)
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At large values of r, the Gaussian function e~ *” decays much more rapidly
than the Slater function e~

For electronic wave function calculations one would prefer to use the
Slater functions. They more correctly describe the qualitative features of the
molecular orbitals {; than do Gaussian functions, and fewer Slater basis
functions than Gaussian basis functions would be needed in the basis function
expansion of y;, for comparable results. It is possible to show, for example,
that at large distances molecular orbitals decay as ¥; ~ e~ %", which is of the
Slater rather than the Gaussian form. In particular, the exact solution for
the 1s orbital of the hydrogen atom is the Slater function (7))~ 1/2e".

The reason why one considers Gaussian functions at all is that, in an
SCF calculation, one must calculate of the order of K*/8 two-electron inte-
grals (uv|Ao). These integrals are of the form

(”AVBIACO' p) = fdl'l dr, ¢;"(r1)¢f(r1)r 1295 (r)dlr2) (3.206)

where ¢ is a basis function on nucleus 4, i.., centered at R,. The general
integra! involves four different centers: R,, Rz, R, and R,. Evaluation
of these four-center integrals is very difficult and time-consuming with
Slater basis functions. These integrals are relatively easy to evaluate with
Gaussian basis functions, however. The reason is that the product of two
1s Gaussian functions, each on different centers, is, apart from a constant,
a 1s Gaussian function on a third center. Thus

¢Tr (o T — R)OT(B, 1 — Rp) = K 43875 (P, — Rp) (3.207)
where the constant K 5 is
K5 = (22B/[(@ + B)n])*** exp[—ap/(@ + R, — Ry*]  (3.208)

The exponent of the new Gaussian centered at R, is

p=o+p (3.209)
and the third center P is on a line joining the centers 4 and B,
Rp = (@R, + BRp)/(x + B) (3:210)

This relationship is shown in Fig. 3.1

Exercise 3.19 Derive Eq. (3.207)

As a result of (3.207), the four-center integral in (3.206) immediately
reduces, for 1s Gaussians, to the two-center integral

(l»‘A"BMcUD) = K ,5K¢p fdl'l dr, ¢(13sF(Pa r,— Rp)ritoé%s (g, r; — RQ) (3.211)

These integrals can be readily evaluated as described in Appendix A.
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Figure 3.1 The product of two 1s Gaussians is a third 1s Gaussian.

One is thus faced with somewhat of a dilemma. Two-electron integrals
can be calculated rapidly and efficiently with Gaussian functions, but
Gaussian functions are not optimum basis functions and have functional
behavior different from the known functional behavior of molecular orbitals.
One would prefer to use better basis functions. One way around this problem
is to use as basis functions fixed linear combinations of the primitive Gaussian
functions ¢SF. These linear combinations, called contractions, lead to con-
tracted Gaussian functions (CGF),

L
#5Fr— R, = Zl d, 5 @, r —R,) (3.212)
p=

where L is the length of the contraction and d,,, is a contraction coefficient.
The pth normalized primitive Gaussian ¢5" in the basis function ¢5°F has a
functional dependence on the Gaussian orbital exponent (contraction expo-
nent) «,,. By a proper choice of the contraction length, the contraction
coefficients, and the contraction exponents, the contracted Gaussian function
can be made to assume any functional form consistent with the primitive
functions used. If the primitive functions are all 1s Gaussians at the same
center, then ¢SCF can only be of s-symmetry. Although we will not pursue
such possibilities, if the primitive functions were allowed to reside on different
centers, the expansion (3.212) could in principle describe any basis function.
The idea behind the use of contracted Gaussian functions is to choose in
advance the contraction length, contraction coefficients, and contraction
exponents that fit the right-hand side of (3.212) to a desirable set of basis
functions ¢S°F and then to use these fixed functions in molecular wave func-
tion calculations. That is, the contraction coefficients, etc. are not allowed
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to change in the course of an SCF calculation. The two-electron integrals
(uv| A) for the contracted basis set functions {¢S°F} can, from (3.212), be
evaluated as sums of rapidly calculated two-electron integrals over the
primitive Gaussian functions.

By proper choice of the contraction parameters one can thus use basis
functions that are approximate atomic Hartree-Fock functions, Slater-type
functions, etc., while still evaluating integrals only with primitive Gaussian
functions. A procedure that has come into wide use is to fit a Slater-type
orbital (STO) to a linear combination of L =1, 2, 3, . . . primitive Gaussian
functions. This is the STO-LG procedure (the procedure is commonly
referred to as STO-NG, but since N represents the number of electrons
everywhere in this book, we prefer an alternative symbol). In particular,
STO-3G basis sets are often used in polyatomic calculations, in preference
to evaluating integrals with Slater functions. We will use STO-3G basis sets
for our model calculations on H, and HeH *. We need to explicitly consider
the form that the contraction (3.212) takes if ¢$CF is to approximate a ls
Slater-type function.

Let us first consider fitting a Slater function having Slater exponent
{ =10. Later we will return to consider other exponents. We will only
consider contractions up to length three so that the three fits we seek to
find are

$SEF( = 1.0, STO-1G) = ¢S5 (@1,) (3.213)
$SSF(C = 1.0, STO-2G) = d;28T5 (212) + d2285 (222) (3.214)

$TeF( = 1.0, STO-3G) = dy 30T (%13) + 23T (223) + d33¢ 75 (033)  (3.213)

where the ¢SCF ({ = 1.0, STO-LG) are the basis functions that approximate
as best as possible a Slater-type function with { = 1.0. We therefore need to
find the coefficients d,, and exponents a,, in (3.213) to (3.215) that provide
the best fit. The fitting criterion is one that fits the contracted Gaussian
function to the Slater function in a least-squares sense, i.e., we seek to mini-
mize the integral

I= J'dr [6%F(C = 1.0, 1) — ¢SSF( = 1.0, STO-LG,n]>  (3216)

Equivalently, since the two functions in this equation are normalized, one
maximizes the overlap between the two functions, i.e., one maximizes

S= f dr $55(C = 1.0, 1) $SSF(¢ = 1.0, STO-LG, 1) 3.217)

For the STO-1G case there are no contraction coefficients, and we only
need to find the primitive Gaussian exponent « which maximizes the overlap

S = (1)~ V2(Qu/m)** f dre~e~ (3.218)
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Table 3.1 Overlap of a 1s Slater function
({ = 1.0) and a 1s Gaussian function

s = [dr ¢3¢ = 1.0 6(@)

o S
0.1 0.8641
0.2 0.9673
0.3 09772
04 0.9606
0.5 0.9355

Coptimom = 0.270950

" This overlap is shown in Table 3.1. The optimum fit occurs for a = 0.270950
and is shown in Fig. 3.2a. The corresponding radial distribution functions
(4nr?|o, (r)|?) are compared in Fig. 3.2b. Notice the different behavior near
the origin and the more rapid fall-off of the Gaussian function at large r.
The overlaps S of (3.217) can be maximized for the STO-2G and STO-3G
cases also and, if one does so, the optimum fits are as follows:

¢5°F({ = 1.0, STO-1G) = ¢7;(0.270950) (3.219)

#S9F(¢ = 1.0, STO-2G)
= 0.678914¢SF(0.151623) + 0.430129¢:5F(0.851819) (3.220)
#SF(¢ = 1.0, STO-3G) = 0.444635¢5F(0.109818) + 0.535328 ¢S$F(0.405771)
+ 0.154329¢:SF(2.22766) (3.221)

os P ——— SLATER
----- ST0-16

4urt| ¢,,|'

2 g o ¢ § . 2 9 2 \\\ﬁs 3 Y 3
S5 10 1S 20 25 30 335 40 10 20 30 40 S50 60 70 80
Radius (0.u.) Rodius (0.u.)

Figure 3.2 Comparison of a Slater function with a Gaussian function: a) least squares fit of
a Is Slater function ({ = 1.0) by a single STO-1G 15 Gaussian function (x = 0.270950); b)
comparison of the corresponding radial distribution functions (4nr?|¢, (r)[?).
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Figure 3.3 Comparison of the quality of the least-squares fit of a 1s Slater function ({ = 1.0)
obtained at the STO-1G, STO-2G, and STO-3G levels.

Figure 3.3 illustrates the improvement of the fit to a Slater 1s function
({ = 1.0) obtained by increasing the number of Gaussians in the contraction
(i.e., upon going from STO-1G to STO-2G to STO-3G).

Exercise 3.20 Calculate the values of ¢(r) at the origin for the three
STO-LG contracted functions and compare with the value of ()~ '/? for a
Slater function ({ = 1.0).

The STO-LG fits to a Slater function, given in Egs. (3.219) to (3.221), are
for a Slater exponent of { = 1.0. How does one obtain a fit to a Slater func-
tion with a different orbital exponent? The orbital exponents are scale
factors which scale the function in 7, i.e., they expand or contract the func-
tion, but do not change its functional form. Because the scale factors mul-
tiply r as follows,

e W ¢y o~ Vol (3.222)
the proper scaling is
O = [ofa]? (3.223)

The appropriate contraction exponents « for fitting to a Slater function with
orbital exponent { are thus

a=oa=10) x {2 (3.229)
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If the Slater exponent doubles, the contraction exponents should be mul-
tiplied by a factor of four. This scaling procedure is quite general and con-
traction parameters need only be determined once for a given type of basis
function ¢C°F. If a different scale factor for ¢<F is required, the contraction
exponents can be appropriately scaled. The usual description of the STO-
3G basis set includes a standard set of Slater orbital exponents {, for basis
functions centered on particular atoms. For example, the standard exponent
for the 1s basis function of hydrogen is { = 1.24. This is larger than the

- { =10 exponent of the hydrogen atom, since the hydrogen ls orbital in
average molecules is known to be “smaller” or “denser” than in the atom.

. Using the scaling relation (3.224), the standard STO-3G basis function for
hydrogen becomes,

| ¢SCF( = 1.24, STO-3G) = 0.444635¢4TF(0.168856) + 0.535328¢$F(0.623913)
+ 0.154329¢ 57 (3.42525) (3.225)
This is the basis function we will use for H in our following calculations.

|
|
|
\

' 352 STO-3G H,

In Subsection 2.2.5 we presented our minimal basis H, model, which has
only one occupied molecular orbital and one virtual molecular orbital.
With the description of the 1s minimal STO-3G basis set given in the last
subsection we are now in a position to illustrate ab initio Hartree-Fock
calculations on H,. The model is simple but extension to larger basis sets is
relatively straightforward and most of the aspects of Hartree-Fock theory
that we wish to illustrate here are independent of the actual size of the basis
set. Unfortunately, however, the model is too simple to be able to illustrate
the iterative nature of the SCF procedure. In the next subsection we describe
a minimal basis calculation on HeH™, in order to illustrate this aspect of
Hartree-Fock theory.

In this subsection, we describe restricted closed-shell calculations on the
ground state of H,. As we will see, there is a very basic deficiency in such
calculations at long bond lengths. Later in this chapter, when we describe
unrestricted open-shell calculations, we will return to minimal basis H, and
partially correct this deficiency. Some of the results obtained here will also
be used in later chapters when we use the minimal basis H, model to illus-
trate procedures that go beyond the Hartree-Fock approximation.

According to the steps involved in an SCF calculation, as outlined in
Subsection 3.4.6, we must first of all choose a geometry for the nuclear frame-
work. We will use the coordinate system of Fig. 2.5 with an internuclear
distance R = |R,,| equal to the experimental value of 1.4 atomic units (Bohr).
Our basis set is the standard STO-3G basis set, consisting of two functions
¢, and ¢, where each of these functions is a contraction of three primitive
Gaussians such that each constitutes a least-squares fit to a Slater function
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with orbital exponent { = 1.24, as previously illustrated in Eq. (3.225). That s,
$u(r) = (/m) 2~ M
@1(r) = ({3/m)!/2etlr Rl (3.226)
(=124

It is important to remember, however, that each basis function has the def-
inite form of (3.225) and that, while the functions approximate Slater func-
tions, there is no approximation being made, other than the Hartree-Fock
approximation, once the basis functions are chosen. The next step in the
SCF calculation involves the evaluation of all integrals over the basis set
{b.},ie.,S,,, Hix", and the two-electron integrals (uv|Ag). All these integrals
can be evaluated using formulas developed in Appendix A. Consider the
overlap integral,

Sw = [ dr ¢5F(r — R )$SF(x ~ Ry) (322)

Substituting the general contraction (3.212), this integral reduces to the sum
of overlap integrals involving primitive Gaussians. That is,

L L
So=[dr ¥ 545700~ R) ¥ dp#$7 0T~ Ry)
p=1 q=1

L L
= Z Z d:l‘dQ" _rdr ¢SP(aPI" r— RA)¢¢?F(aqv, r— RB)

p=14=1

L L
=Y Y dvd,S, (3.228)
p=1g4q=1

In a similar manner, if other integrals over primitive Gaussian functions are
evaluated using the methods of Appendix A, they can be summed to give
integrals over any specific contracted function of interest, such as that of
(3.225). One finds that the overlap S, , for the functions ¢, and ¢, of minimal
basis H, at R = 1.4 a.u. is 0.6593. The overlap matrix is thus

10 06593
5= (0.6593 1.0 ) (3:229)

At longer bond lengths the overlap S,, would decrease towards zero. At
R =0 the overlap S, , is, of course, 1.0.

Exercise 3.21 Use definition (3.219) for the STO-1G function and the
scaling relation (3.224) to show that the STO-1G overlap for an orbital
exponent { = 1.24 at R = 1.4 a.u,, corresponding to result (3.229), is §,, =
0.6648. Use the formula in Appendix A for overlap integrals. Do not forget
normalization.
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The elements H 7 of the core-Hamiltonian are the sum of elements
T,, describing the kinetic energy and elements describing the coulomb
attraction of an electron for the first nucleus (V;,) and the second nucleus
(V2,). From Appendix A these integrals can be calculated to be

0.7600 0.2365

T= (0.2365 0.7600) (3.230)
~12266 —0.5974

L R

v "(—0.5974 —0.6538) (231)
—-0.6538 —05974

2 _

v ’(—0.5974 —1.2266) (3.232)

If the basis functions were the hydrogen atom solutions (z)~'/2¢~", then T,
would be 0.5, the kinetic energy of an electron in the hydrogen atom, and
Vi, = V%, would be — 1.0, the potential energy of an electron in the hydrogen
atom. The present values reflect the larger exponent { = 1.24, which leads
to a “smaller” orbital than in the hydrogen atom. The electron is therefore
closer to the nucleus, leading to a more negative value of the potential energy
(—1.2266), and it “travels faster to avoid collapsing into the nucleus,” leading
to a larger kinetic energy (0.7600). The energy of a hydrogen atom in this
basis is just T,, + V], = 0.7600 — 1.2266 = —0.4666 a.u. to be compared
with the exact value of —0.5 a.u. If an electron in ¢, were somehow to be
localized exactly at the position of nucleus 1, its attraction for nucleus 2
would be —1/1.4 = —0.7143. The actual value of this attraction, shown in
Fig. 3.4,is Vi, = —0.6538, at R = 1.4 a.u. As the internuclear distance R
increases, V2, will converge asymptotically to — R ~!. The off-diagonal elements
of T and V" cannot be given such simple classical interpretations and they
constitute the basic quantum mechanical effects of bonding. As the inter-
nuclear distance R becomes large, the off-diagonal elements go to zero.
The core-Hamiltonian matrix is the sum of the above three matrices,

-1.1204 —0.9584)

He's = T + V! + V2= ( (3233)

—09584 —1.1204

8 ) Figure 3.4 Attraction of an electron for an
<V > < 'IB — AB adjacent nucleus.
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This is the Hamiltonian matrix for a single electron in the field of the nuclei,
in this case for H; . Solving the matrix eigenvalue problem

H*C = SCe (3.234)

would lead to the orbital energies and molecular orbitals of H; . For other
cases such as H,O, it would lead to the orbitals energies and molecular
orbitals of H,O%*, which are not of particular interest.

Of the 2* = 16 possible two-electron integrals (uv|is) in the minimal
basis model, there are only four unique values,

(¢:190, |¢1¢1) = (29, |¢z¢z) = 0.7746 a.u.
(@10, |¢20,) = 05697 a.u.
(920,|0101) = (920,]|0,4,) = 04441 a.u.
(@20, |¢20,) =0.2970 a.u.

(3.235)

The other integrals are related to the above by simple interchange of
indices, for example, (uv|Ao) = (uv|64) = (Ao |uv). The one-center integrals
(0.9.|¢:14,) and (¢,¢,|d,0,) just represent the average value of the
electron-electron repulsion of two electrons in the same 1s orbital. The two-
center integral (¢, ¢, |@,¢,) is the repulsion between an electron in an orbital
on center 1 and an electron in an orbital on center 2. Its value, which is
0.5697 a.u. at R = 1.4 a.u,, will tend to 1/R as the internuclear distance R
increases. The other two integrals do not have classical interpretations. They
both go to zero at long bond lengths as the overlap S, goes to zero. Having
calculated all basic integrals we could proceed to solve Roothaan’s equations
by the procedure we have previously given, i.e., guess at the density matrix,
form the Fock matrix, transform the Fock matrix to a basis of orthonormal
orbitals, diagonalize the transformed Fock matrix, etc. Our minimal basis
model for H, is, however, simple enough that the solutions to Roothaan’s
equations are determined by simple symmetry arguments. The canonical
molecular orbitals will form a representation of the point group of the
molecule. That is, for a homonuclear diatomic they can be labeled as having
the symmetry o, g, 7, ,, etc. With our minimal basis set there are only
two molecular orbitals. The lowest energy one will be the occupied molecular
orbital, a bonding orbital of ¢, symmetry,

¥ =[2(1 + 1)1 V4@, + ¢)) (3.236)

The virtual molecular orbital will be the corresponding antibonding com-
bination of g, symmetry,

'/’z = [2(1 -8 2)]_1/2(4)1 - 4’2) (3.237)
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The final coefficient matrix for this problem is, therefore,

- [2(1 + Slz)]-uz [2(1 - S, )]-1/2
€= ([2(1 + Slz)]—IIZ -[201 - Sli)]—l/z) (3.238)

and the final density matrix is

(A +S)7 +S8)7N (1 1
P—((1+Sii)“ (1+Siz)_,)_(1+s,2) 1(1 1) (3.239)

If a density matrix other than the above were actually used for an initial
guess in the SCF procedure and the iterations carried out, the procedure
would converge to this symmetry determined solution.

Exercise 3.22 Derive the coefficients [2(1 + S,,)]"'?* and [2(1 -
S:2)]~ /2 in the basis function expansion of ¥, and ¥, by requiring ¥, and
¥, to be normalized.

Exercise 3.23 The coefficients of minimal basis H; are also determined
by symmetry and are identical to those of minimal basis H,. Use the above
result for the coefficients to solve Eq. (3.234) for the orbital energies of

' minimal basis H; at R = 1.4 a.u. and show they are

|
\
\
\
[
/
|
|
i

e, = (HS® + HS%®)/(1 + Sy,) = —1.2528 a.u.
g, = (HSY® — HSS)/(1 — S;,) = —0.4756 a.u.

Exercise 3.24 Use the general definition (3.145) of the density matrix to
derive (3.239). What is the corresponding density matrix for H3 ?

Exercise 3.25 Use the general definition (3.154) of the Fock matrix to
show that the converged values of its elements for minimal basis H, are

Fyy=F=Hif" +(1 + Slz)_l[Jz“(d’ld’lld’ld’l) + (4194 |¢2¢2)
+ (¢1¢1 |¢1¢2) - 11F(¢1d’2|¢1¢2)] = —0.3655 a.u.

Fiy=Fy =Hi3 + (1 + S15) ' [-3(6:19, |¢2¢2) + (9194 |¢1¢2)
+ %(¢1¢2|¢1¢2)] = —0.5939 a.u.

Exercise 3.26 Use the result of Exercise 3.23 to show that the orbital

energies of minimal basis H ,, that are a solution to the Roothaan equations
FC =SCeg, are

81 =(F11 + FIZ)/(I + SIZ) = _0.5782 a.u.
82 = (Fll - FIZ)/(I - SlZ) = +0.6703 a.\u,
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Exercise 3.27 Use the general result (3.184) for the total electronic
energy to show that the electronic energy of minimal basis H, is

EO = (Fll + Hcloll’e + F12 + H‘iozre)/(l + SIZ) = —'1.8310 a.u.
and that the total energy including nuclear repulsion is
E, = —1.1167 a.u.

The results of the last three exercises have described the results of a
minimal basis H, calculation in terms of integrals and matrices evaluated
over members of the basis set {¢,} rather than over members of the set of
solutions {i;}. That is how any actual calculation would be performed; the
molecular orbitals ; are not known until the calculation is completed. For
a discussion of the SCF results or for use of the SCF results in subsequent
treatments of correlation effects, it is convenient to transform the basic
integrals in terms of the functions {¢,} to corresponding integrals in terms
of the functions {¥;}. Since we know the relation between the two sets of
functions, i.e.,

K

V=Y Cud, i=12...,K (3.240)

u=1
The transformations proceed as follows

hij = (¢i|h|¢ j) = Z Z C:icijva" (3.241)
W | Y = Z Z ; Z C:icvjcfkcal(#vlla ) (3.242)

The two-index transformation of (3.241) is relatively easy and requires no
more than the multiplication of K x K matrices. The four-index transfor-
mation of the two-electron integrals, however, is a very time consuming
process. An optimum algorithm for performing the transformation requires
the O(K>) multiplications. This is an order of K more difficult than any step
in the complete SCF calculation. If the transformed two-electron integrals
are not required, they certainly should not be calculated. On the other hand,
most formulations for proceeding beyond the Hartree-Fock approximation,
and all those considered in this book, require integrals over molecular
orbitals. For our minimal basis H, model, the transformation is, of course,
not difficult. The nonzero transformed elements of the core-Hamiltonian
and two-electron integral matrix that result are

hy, = (lﬁlIhllﬁl) = —1.2528 a.u. hyy = (lﬁzlhllﬁz) = —0.4756 a.u.
Ji1 =W, |¢1¢1) = 0.6746 a.u. J2a =20, |¢2¢2) = 0.6975 a.u.
Ji2 =Wy, |¢2¢2) = 0.6636 a.u. Ky, = (¢1¢2|¢2¢1) =0.1813 a.u.
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As we've described before, h,, is the kinetic energy and nuclear attraction
of an electron in ¥, h,, is the same for an electron in y,, J, is the coulomb
interaction of the two electrons in ¥/,, J,, is the coulomb interaction of two
electrons in y/,, J,, is the coulomb interaction of an electron in ¥, and an-
other electron in ,, and —K,, is the exchange interaction between an
electron in ¥, and an electron with the same spin in y,.

The transformed Fock matrix, f;; = (| f|¥;) is by definition diagonal,
with diagonal elements equal to the orbital energies. The closed-shell orbital
energies, as derived in Exercise 3.9, are given by

8,- = h,-,' + Z 2Jl'b - Kib (3-243)
b
For our minimal basis model, these are
8] = hll + Jll = _0.5782 a.u. (3.244)
£y =hy, +2J,, — K;; = +0.6703 a.u. (3.2495)

Note that e, # h,, + J,,, sinceitis a virtual orbital and describes the energy
of an electron in the (N + 1)-electron system, as discussed in conjunction
with Koopmans’ theorem. Appendix D contains the values of these orbital
energies, as well as the two-electron integrals J,,, etc., as a function of bond
length. Using the values of these integrals it will be possible, here and in later
chapters, to investigate the behavior of a number of many-electron quantities
for H,, as a function of bond length.
The total electronic energy of the ground state is

EO = 2hll + Jll = - 1.8310 a.\. (3.246)

The total energy, including nuclear repulsion, is
E,=Ey,+ 1/R=—1.1167 a.u. (3.247)

Since the energy of a hydrogen atom in this basis is —0.4666 a.u., the pre-
dicted dissociation energy of H, is 2(—0.4666) + 1.1167 = 0.1835 a.u. =
4.99 eV. This is to be compared with the experimental dissociation energy of
4.75eV. The agreement is remarkably good; even though the calculated
energy of H, is much above the exact value, there is a compensating inexact
treatment of the hydrogen atom.

The above dissociation energy is in good agreement with experiment,
but to explore fully the dissociation question it is necessary to investigate
the full potential surface. By repeating the above calculations for different
values of the internuclear distance one obtains the potential curve shown in
Fig. 3.5, which is to be compared with the essentially exact results of Kolos
and Wolniewicz.> The minimal basis restricted Hartree-Fock calculation
does not go to the limit of two hydrogen atoms as R goes to infinity. This
result may at first be surprising. This totally incorrect behavior is not specific
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Figure 3.5 Restricted Hartree-Fock potential curve for STO-3G ({ = 1.24)H, compared with
the accurate results of Kolos and Wolniewicz.

to H,. If one stretches any bond for which the correct products of dissociation
must be represented by open-shell wave functions, then restricted closed-
shell calculations must necessarily give the wrong limit. For H, the products
of dissociation are two localized hydrogen atoms; that is, one electron is
localized near one of the protons and the other electron is localized near the
other distant proton. In the restricted calculation, however, both electrons
are forced to occupy the same spatial molecular orbital y,. This molecular
orbital is symmetry determined, having the form of (3.236). Therefore,
independent of the bond length, both electrons are described by exactly the
same spatial wave function and have the same probability distribution
function in 3-dimensional space. Such a description is inappropriate for two
separated hydrogen atoms. A restricted closed-shell Hartree-Fock calcula-
tion, which restricts electrons to occupy molecular orbitals in pairs, cannot,
therefore, properly describe dissociation unless the products of dissociation
are both closed-shells.

We can investigate the dissociation behavior in an analytical way by
using the results of Exercises 3.25 and 3.27. As R — o0, the two-center nuclear
attraction of Fig. 3.4 goes to zero and HSY® — T,, + V1, the energy of a
hydrogen atom in the basis (—0.4666). All other integrals go to zero as R—
o0, except the one-center electron-electron repulsion integral (¢,9, |$;4,).
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One therefore obtains
limit E,(R) = limit 2HSY® + 3(¢,9,|¢104)

| R- R
= 2EH) + ¥(¢ 19, |¢1¢1)
= —0.9332 + 0.3873

= —0.5459 a.u.

The limit, rather than being twice the energy of a hydrogen atom in the same
basis (2E(H)), includes the spurious term (¢, ¢, |¢$,¢,). This spurious term
arises because, since both electrons occupy the same spatial orbital, there
remains even at infinity some electron-electron repulsion. Alternatively, the
products of the dissociation are not just 2H-, but also include, incorrectly,
H™ and H*. The energy of H™ includes contributions from the electron-
electron repulsion integral (¢,¢,|#,¢,). Another way of looking at this is
that a molecular orbital wave function is equivalent to a valence bond wave
function in which equal weight is given to covalent terms and ionic terms.
Since the wave function is symmetry determined, the ionic terms remain,
even on dissociation. We will return to the dissociation question when we
consider unrestricted Hartree-Fock calculations.

The poor behavior of restricted closed-shell Hartree-Fock calculations
upon dissociation to open-shell products does not detract from their utility
in the region of equilibrium. The calculated equilibrium geometry is that at
which E,, is a minimum with respect to the coordinates of the nuclei. Table
3.2 shows the value of this energy for internuclear distances in the vicinity of
the experimental bond length of 1.4 a.u. The calculated minimum energy
occurs at 1.346 a.u. This is in error by 4%, and errors of similar magnitude
can be expected for equilibrium geometries of other molecules at this level
of approximation.

Before leaving minimal basis H, (at least, temporarily), we want to use
the model to illustrate exponent optimization. We have been using a standard
exponent of { = 1.24. These orbital exponents are nonlinear parameters upon
which our wave function depends. By the variational principle, the best wave

Table 3.2 Energy of minimal basis STO-

3G H, as a function of bond length
R (au) E (a.u.)
1.32 -1.11731
134 —-1.11750
1.36 —1.11745
1.38 —-1.11719
1.40 -1.11672

R, =1346au.
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Table 3.3 Optimization of the Slater expo-
nent for minimal basis STO-3G H, at

R=14au.

4 E. (au)
10 —1.08164
L1 —1.11089
12 - 1.11912
1.3 ~1.10714

(optimum = 1 19

function of a given form is the one in which the energy has been minimized
with respect to all wave function parameters. Because the orbital exponents
are nonlinear parameters, however, there is no computationally easy way of
determining their optimum values. Rather than go to the expense of finding
their optimum values by performing many calculations with different orbital
exponents it is common to choose reasonable “standard” values, such as our
STO-3G value of 1.24 for the 1s orbitals of hydrogen. The size of the basis is
increased if greater accuracy is desired. Nevertheless, it is sometimes neces-
sary or desirable to optimize exponents if for no other reason than to deter-
mine what a “reasonable” value might be. Table 3.3 shows values of the total
energy for minimal basis H, at R = 1.4 for a range of values of the 1s Slater
exponent {. The optimum exponent is 1.19 at R = 1.4 a.u. This optimum value
will change with bond length and will be different for hydrogen atoms in
other molecules. One finds, however, that optimum values for a range of
molecules are commonly larger than 1.0 (the exact hydrogen atom value),
and the standard STO-3G value of 1.24 was chosen as representative of
optimum value in a number of small molecules. The optimum value of 1.19
for H, means that the hydrogen molecule is in a sense “smaller” than the
sum of 2 hydrogen atoms. This is common in chemical bonding—the
attraction of the bonding electrons for two nuclei, rather than one, contracts
the electron cloud.

3.5.3 An SCF Calculation on STO-3G HeH"*

The two-electron molecules H, and HeH ™ are prototypes for homonuclear
and heteronuclear diatomic molecules. We have just finished describing
restricted Hartree-Fock calculations on minimal basis STO-3G H,, and
we now do the same for minimal basis STO-3G HeH*. The limitation of
these minimal basis models for describing two-electron systems lies solely
in the basis set. Larger basis sets would lead to correspondingly more
accurate results, but the minimal basis is adequate for illustrating the points
we wish to make. The extension to larger basis sets is straightforward.
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Although the minimal basis sets are very small, one can describe results
that are “exact” within the one-electron space spanned by these basis func-
tions. In particular, using the minimal basis sets, we can explore any number
of different computational approaches and compare the results with the
“exact” results for the same basis. In later chapters we will be using the
same minimal basis STO-3G H, and HeH * models to illustrate configuration
interaction calculations, perturbation theory calculations, etc. The results
obtained there will be compared with the “exact” results for the same basis
and the Hartree-Fock calculations of this chapter.

One of the deficiencies of the minimal basis H, model was that, with
only two basis functions, the molecular orbitals were symmetry determined
and the model could not be used to illustrate the iterative nature of the
SCF procedure. Because HeH ™ is heteronuclear it has less symmetry than
H, and the molecular orbitals for the minimal basis model are not determined
by symmetry. As such, restricted Hartree-Fock calculations on HeH * pro-
vide essentially a complete illustration of the principles involved in solving
the Roothaan equations.

The singly charged helium hydride molecular ion has been known for
many years from mass-spectroscopic studies. It is of interest in astrophysical
problems, as the product of the # decay of HT, in scattering of protons off
helium, and for a number of other reasons associated with its simplicity.
There seems to be, however, little direct experimental evidence for the struc-
ture of its various electronic states. Very accurate calculations by Wolniewicz®
show that its ground state has an equilibrium bond length of 1.4632 a.u. and
an electronic binding energy of 0.0749 a.u. (2.039 eV). The ground state
dissociates to a helium atom and a proton

HeH *(X'Z) - He('S) + H* (3.248)

rather than to He™ + H, since the ionization potential of He (24.6 V) is
larger than the electron affinity of a proton (13.6 eV). Alternatively, the
electron affinity of He* is larger than the electron affinity of H*. The
exact energies of the various species involved are given in Table 3.4. Since

Table 3.4 Exact energy of H and He

species
Species Energy (a.u.)
H' 0.0
H -0.5
He* =20
He —290372¢
HeH* (R = 1.4632 a.u.) -297867"

«C. L. Pekeris, Phys. Rev. 115: 1217 (1959).
* L. Wolniewicz, J. Chem. Phys. 43: 1807 (1965).
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the products of dissociation are closed-shells, we expect a restricted Hartree-
Fock calculation to behave correctly at large bond lengths, unlike the be-
havior exhibited in the case of H,.

To perform an SCF calculation, we first choose a geometry for the
nuclei. We let the helium nucleus be nucleus 1 with position vector R, and the
hydrogen nucleus be nucleus 2 with position vector R,, so that |R; — R,| =
R, = R is the internuclear distance. We will use the exact internuclear
distance so that R = 1.4632 a.u. We then need to specify the basis set, which
in our case is the STO-3G minimal basis set consisting of a 1s basis function
on each of the two nuclei,

¢y = ({3/m)! /2l Rl (3.249)
¢2 ~ (C;/n)lﬂe-blf‘nzl (3.250)

These basis functions are each a contraction of three primitive Gaussians,
with the contraction coefficients of (3.221), and contraction exponents which
are those of (3.221) scaled by multiplying by the square of either {, or {,.It
remains only to specify the Slater exponents {, for He and {, for H. The
standard STO-3G exponent for H in molecular environments is {, = 1.24
which is the value that we used in our minimal basis H, calculations. No
such standard STO-3G exponent for He has been recommended, however.
In choosing exponents for molecular calculations it is common to use expo-
nents obtained by minimizing the energy of a calculation on the isolated
atom using the same basis set. These are sometimes called “best atom”
exponents. For H the best atom exponent is 1.0. If one performs a restricted
Hartree-Fock calculation on the He atom using a basis set consisting of
only one Slater orbital, ({3/r)!/2e~%, one finds that the best atom exponent is
27/16 = 1.6875. The derivation of the value 27/16 is a common textbook
example’ of the variational principle. Since HeH* has a net positive charge,
we expect, however, that the electron cloud is considerably contracted rela-
tive to that for the free atoms He and H. For illustrative purposes we will use
the standard STO-3G value of {, = 1.24 for H and let the standard value
for He be {; = 1.6875 x 1.24 = 2.0925 which, like the value for H, is also a
factor of 1.24 larger than the best atom value. Figure 3.6 shows our coordinate
system and basis functions for the HeH* calculation. As described previously,
each of the STO-3G basis functions of Fig. 3.6 or Egs. (3.249) and (3.250) is
the sum of the three primitive Gaussians.

The next step in our calculation, or most ab initio calculations, is the
evaluation of the required integrals over the set of basis functions. Appendix
A describes how the integrals can be evaluated for 1s Gaussian functions
and gives explicit formulas for all integrals involving only 1s Gaussians.
Appendix B gives a FORTRAN listing, and output for our HeH* case, of a
small program which illustrates the complete steps involved in solving the
Roothaan equations and which is capable of performing minimal basis
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[, =2.0925

Figure 3.6 Coordinate system and basis functions for the minimal basis STO-3G HeH™
calculation.

| Gaussian calculations on any two-electron diatomic molecule. We will only
give some of the results here and refer the reader to the output or program
in Appendix B, when necessary. From Appendix A, the overlap of the two
[ basis functions decreases exponentially with the internuclear distance. At
the internuclear distance R = 1.4632 a.u. its value is S,, = S,, = 0.4508.
This overlap is smaller than that in H, mainly because the He orbital is
smaller and more localized than a corresponding H orbital. The overlap

matrix is, therefore,
1.0 0.4508
= 251
S (0.4508 10 ) (3.251)

. The kinetic energy matrix is

| B (2.1643 0.1670)

252
0.1670 0.7600 (3.252)

The T,, value is, of course, identical to that in H, since we are using the
same exponent. The T,, value, which describes the kinetic energy of an

. electron in the 1s orbital around He, is much larger than that for H, reflecting
the larger orbital exponent of the He orbital, which in turn reflects the larger
nuclear charge of He. The smaller the average distance of electron from the
nucleus, the larger is its kinetic energy.
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The matrix of nuclear attraction energy to nucleus 1 (the He nucleus) is

—4.1398 —1.1029
1 _
v ‘(—1.1029 —1.2652) (3259

The one-center attraction of an electron in ¢, for its own nucleus (—4.1398)
is naturally larger in magnitude that the attraction of an electron in the
distant function ¢, for this nucleus (— 1.2652). This last two-center integral
becomes —2/R at large internuclear distances. The off-diagonal element, the
attraction for the helium nucleus of an electron described by the product
distribution ¢,(1)¢,(1), is the quantum mechanical term responsible for

chemical bonding.
The matrix of nuclear attraction energy to nucleus 2 (the H nucleus) is
similar to the above, but smaller in magnitude because of the smaller nuclear

charge of the proton.
—0.6772 —-04113
- )
vi= (—0.4113 — 1.2266) (-3

The V3, element is the same as that for H,. The function ¢, with its larger
exponent is relatively localized about the He nucleus and V3, = is close to
its asymptotic value of —1/R = —0.6834.

Having obtained the kinetic energy and nuclear attraction integrals,
we can now form the core-Hamiltonian matrix

—2.6527 —1.3472
—1.3472 —1.7318

As we have stated before, this is the correct Hamiltonian matrix for a single
electron in the field of the nuclear point charges. The solution of a Roothaan-
like equation for the core-Hamiltonian

H"*C = SCe (3.256)

would lead to the molecular orbitals and orbital energies (and, in this case,
total electronic energies) for the one-electron molecule HeH™* *. The effect
of electron-electron repulsion on the molecular orbitals and orbital energies,
within the single determinant approximation, is in the matrix G which must
be added to H®** to obtain the Fock matrix F.

The final remaining integrals to be calculated are the two-electron re-
pulsion integrals. Of the 2* = 16 possible integrals (uv|1c), there are only
six unique integrals,

(¢19, |¢1¢1) = 1.3072 a.u. (4’24’2'4’14’1) = 0.6057 a.u.
(@201|91¢1) =04373 a0, (,0,|¢,¢,) = 03118 a.u.
(9201|0201)=01773 a0, (¢,0,|d20;) = 0.7746 a.u.

H* =T+ V! +V2= ( (3.255)
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The one-center integrals (¢,¢,|$,4,) and ($,¢,|P,¢,) are the repulsions
between an electron in ¢, (or ¢,) and another electron in the same orbital
¢, (or ¢,). The average distance between two electrons in the “smaller”
function ¢, is less than that between two electrons in the “larger” and more
diffuse function ¢,, and thus (¢,¢,|$,¢,) is larger than (¢,¢,|p,¢2). The
two-center integral (¢,$,|¢,4,) is the repulsion between an electron in
¢, and an electron in ¢,. This has the asymptotic value 1/R as the inter-
nuclear distance becomes large. The other three integrals do not have simple
classical interpretations.

We now have all the integrals needed for our SCF calculation on HeH™*.
Prior to beginning the iterations, however, we need to derive a transformation
matrix to orthonormal basis functions,

¢ =2 X9, (3.257)

There are many transformations X that we might use to derive an ortho-
normal set of functions {¢,}. The Schmidt procedure, discussed in Chapter
1, uses the following matrix

X _f1 =S-S5,
Schmidt — 0 l/(l - S%Z)uz

10 —0.5050
(o.o 1.1203) (3.258)

Exercise 3.28 Show that the above transformation produces orthonor-
mal basis functions.

Two other orthonormalization procedures, that we have previously
described, require diagonalizing the overlap matrix. Diagonalizing a 2 x 2
matrix can be accomplished by the methods outlined in Subsection 1.1.6.
For the overlap matrix, the eigenvalues are simply s, =1 + §,, = 1.4508
and s, =1 — §,, = 0.5492. The unitary matrix which performs the diago-

nalization is
2 -1/2 2 -1/2
(0 ) e

To derive the symmetric and canonical orthogonalization transformations
we need the matrix

e 0.8302 0.0
-1/2 Sy - .
s < 0 s;m) (o.o 1.3493) (3.260)

Symmetric orthogonalization then uses the transformation matrix

1.0898 —0.2596

= Q12 o -2t =
Xoymmetric = S Us™ U (—0.2596 1.0898

) (3.261)
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(a) Schmidt

(b) symmetric

(c) canonical
Figure 3.7 Three orthogonalization procedures:

a) Schmidt; b) symmetric; c) canonical.

whereas, canonical orthogonalization uses the transformation matrix

05871 09541
sy = —1/2 o
Xeanonicat = US (0.5871 -0.9541)

The relationship between these three orthogonalizations is shown in Fig
3.7. The angle 0 between the original basis functions is given by cos 6 = §,,.
Schmidt orthogonalization leaves the first basis function alone and produces
a second orthogonal to it. Symmetric orthogonalization produces two new
functions, which most closely resemble the original basis functions. It does
this by opening up the angle between the vectors to 90°. Canonical ortho-
gonalization produces one vector which bisects the angle between the original
vectors and a second vector orthogonal to the first. We will use canonical
orthogonalization so that the transformed basis functions are

¢, = 0.5871¢, + 0.5871¢, (3.263)
¢, = 095414, — 09541¢, (3.264

We are now ready to begin the SCF iteration procedure. We first need
an initial guess at the density matrix. It is convenient to use the null matrix,
This is equivalent to neglecting all electron-electron interaction (setting G
equal to the null matrix) and using the core-Hamiltonian as a first guess at
the Fock matrix

(3.262)

(3.265)

-2, -1.
I ( 26527 3472)

—~1.3472 17318
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This is the easiest initial guess to obtain, but may be a poor one in more
complicated situations. The next step is to transform the Fock matrix to the
canonically orthonormalized basis set.

—24397 -05 158)

'=X'FX =
F=XTX (—0.5158 —1.5387

(3.266)

Diagonalizing this matrix, i.e., solving
FC=Ce (3.267) .

gives a unitary matrix of coefficients

, {09104  0.4136
¢= (0.4136 —0.9104) (3.268)
and two eigenvalues
—2.6741 0.0
= 3.269
’ ( 00 - 1.3043) (3.269)
The coefficients of the original basis functions are then
. (09291 —0.6259
C=XC= (0.1398 1.1115) (3:270)

Equations (3.270) and (3.269) gives the orbitals and orbital energies of
HeH™* *, which we are using as a first guess at the orbitals and orbital energies
of HeH*. Note that the lowest molecular orbital ¥, is composed mainly of
¢, (coefficient = 0.9291) with only a little mixing of ¢, (coefficient = 0.1398).
With no electron-electron repulsion the electrons tend to congregate near the
He nucleus with its higher nuclear charge. The effect of adding electron-
electron repulsion, as we iterate further, will be to moderate this effect and
“smear” the electrons out a bit, so as to decrease the electron-electron

repulsion.
From (3.270) we can now form our first real guess at the density matrix
P (1.7266 0.2599)

0.2599 0.0391 (3271)

The diagonal elements of P show (only qualitatively) how most of the electron
density is in the vicinity of the He rather than the H nucleus. A better appre-
ciation of this would be obtained by a population analysis. The density
matrix of (3.271) is not that of HeH * * (it differs by a factor of 2) but that of
two noninteracting electrons in the field of the nuclei.

From P we can now form a guess at G,

1.2623 0.3740
G"(0.3740 0.9890) (3.272)
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and a new Fock matrix

(3.273)

F—H®*+G = (— 1.3904 —0.9732)

—09732 -0.7429

Because of the positive electron-electron interaction, represented by the
positive elements of the matrix G of (3.272), the elements of this new Fock
matrix are considerably less negative than our original core-Hamiltonian
guess (3.265). We can now solve the eigenvalue problem with this latest
Fock matrix to get a new guess at C and P, and repeat the whole procedure
until self-consistency is obtained. Appendix B contains a program for doing
this, and the program output for our current example of minimal basis STO-
3G HeH ™. This output should be followed in conjunction with our descrip-
tion here.

Table 3.5 shows the elements of the density matrix and the corresponding
electronic energy as a function of the iteration number. As the iterations
proceed, charge builds up around H and decreases around He. To provide
a variational value of the energy at each iteration, the formula

1
E,= 2 ¥y P, (H)* + F,)) (3.274)
u v

must use the same density matrix P as was used to form F. Thus the energy
should be calculated immediately after forming a new F, not immediately
after forming a new P. Table 3.5 shows the energy converging monotonically
from above. Because the energy is a variational quantity, the relative error
in the energy is less than that in the wave function or density matrix.

The final wave function and orbital energies are

0.8019 —0.7823

C= (0.3368 1.0684) (3273
~15975 00

= ( 0.0 —0.0617) (3276

Table 3.5 Density matrix and electronic energy
during the iterative process (STO-3G HeH ™)

Iteration Py P, P,, Eq (au)
1 1.7266 0.2599 0.0391 —4.141863
2 1.3342 0.5166 0.2000 —4.226492
3 1.2899 0.5384 0.2247 —4.227523
4 1.2864 0.5400 0.2267 —4.227529
5 1.2862 0.5402 0.2269 —4.227529
6 1.2861 0.5402 0.2269 —4.227529
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The lowest orbital, the occupied orbital ¥, is a bonding orbital as
evidenced by the same sign for the two coefficients. It is still composed
mainly of the He function ¢,. The virtual orbital i, is an antibonding orbital
with opposite signs for the coefficients. It has a heavier weight for the H
function ¢, as is necessary if it is to be orthogonal to ;. Koopmans’ theorem
allows us to predict an ionization potential and electron affinity. The pre-
dicted ionization potential is large (1.5975 a.u. = 43.5 eV) as should be the
case for a cationic species. The predicted electron affinity (0.0617 a.u. =
1.7eV) is positive, and the calculation predicts that HeH* will bind an
¢lectron. This does not mean that HeH will be a stable molecule, since the
dissociation products of HeH* (i.e., He + H*) bind an electron much
more strongly (the electron affinity of H* is greater than the sum of the
electron affinity and the dissociation energy of HeH*).

A Mulliken population analysis can be obtained from the diagonal ele-
ments of PS. Such a population analysis associates 1.53 electrons with ¢,
and 0.47 electrons with ¢,. The net charge is then +0.47 on He and +0.53
on H. The formal charge of +1 is thus predicted to be divided more or less
equally between the two atoms. A Lowdin population analysis can be ob-
tained from the primed matrices, that is, the matrices associated with the
orthonormal basis {¢,}. The number of electrons associated with the hy-
drogen orbital is

Py, = (S'?PS'1?),, = 2(S'2C)?, = 0.5273 (3.277)

This predicts a similar separation of charge, with net charges of +0.53 and
+0.47 on the He and H, respectively. Note the reversal.
. The total energy of HeH* is obtained by adding the nuclear repulsion
2/R to the electronic energy, to give — 2.860662 a.u. From our basic integrals
it is also possible to determine the energies of H, He*, and He. The energy
of the H atom in this basis is the same as that used in the H, calculation,
ie, Ty, + V3, = —0.4666 a.u. The energy of the one-electron atom He*
in the basis is similarly T,, + V1, = —1.9755 a.u. The He atom has two
electrons in ¢, and, in addition to the kinetic energy and attraction to the
helium nucleus, the energy contains a contribution from the electron-electron
repulsion of the two electrons. The He atom energy is thus 2(T,, + V1) +
(¢,9, |¢,¢,). These energies are shown in Table 3.6 for comparison with
exact results in Table 3.4.

From the results in Table 3.6 it is possible to calculate dissociation
energies for the processes

HeH* - He + H* AE = 0.2168 a.u. (3.278)

HeH* — He* + H AE = 0.4168 a.u. (3.279)

The calculations correctly predict that HeH* will dissociate to the closed-
shells He + H* rather than the open shells He* + H. The dissociation
energy of 0.2168 a.u. = 5.90 eV is quite a bit larger than the correct value
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Table 3.6 Energies for H and He species
with the STO-3G basis set ({, = 2.0925,

Species Energy (a.u.)
H* 0.0
H —0.466582
He* —1.975514
He —2.643876
HeH™ (R = 1.4632 a.u.) —2.860662

of 2.04 eV. This is mainly because our He exponent of 2.0925, while reason-
able for the HeH™* molecule, is quite a bit larger than the best value of 1.6875
for the dissociation product, the He atom. The He energy is tco high, rela-
tive to the HeH ™ energy.

Figure 3.8 shows the whole potential curve for our standard exponents,
and also shows :he essentially exact results of Wolniewicz. The calculated
STO-3G equilibrium bond length is 1.3782 a.u., which is in fair agreement
with the accurate results, even though the well depth is much too large.
Unlike the difficulty encountered in H, (Fig. 3.5), the dissociation behavior
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Figure 3.8 Restricted Hartree-Fock potential curve for STO-3G ({y, = 2.0925,(, = 1.24)HeH*
compared with the accurate results of Wolniewicz.
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is correct since the products of dissociation are closed shells. We can look
at this dissociation analytically as we did foer H,. As the bond length is
stretched, the coefficient of ¢, in ¥, increases and the coefficient of ¢, in ¥/,
decreases. The electrons concentrate more and more around the He nucleus.
In the limit, , becomes just ¢,. The virtual orbital y,, to be orthogonal to
V., correspondingly becomes pure ¢,, that is

1.0 00
- 3.280
Crw (0.0 1.0) (3.250)
The corresponding density matrix is
20 00
PR"°°—<0.0 0.0) (3.281)

The total electronic energy as R — oo can be evaluated by setting all two-
center integrals to zero. The only remaining integrals are Ty, T,,, V1,, V3.,

(¢1¢1‘¢1¢1)’ and (¢2¢2|¢2¢2)-

Exercise 3.29 Use expression (3.184) for the electronic energy, expres-
sion (3.154) for the Fock matrix, and the asymptotic density matrix (3.281)
to show that

EfR— o0) = 2Ty, + 2V}, + (@14 |¢1¢1)

This is just the proper energy of the He atom, for the minimal basis, as
discussed previously in the text.

The calculations on HeH™ described here used a standard set of expo-
nents. A better procedure would have been to optimize exponents at each
internuclear distance. If we had done so, the He exponent {, would have
decreased towards the best atom value of 1.6875 as we increased R. The
value of the H exponent would have decreased to zero at large R (since in
the products of dissociation both electrons reside on the He, the only way
the H basis function can contribute at large R is by being extremely diffuse
and extending over to the region of the He nucleus). Since there are only two
exponents in this problem, it would have been reasonably easy to optimize
exponents, for example, just by iteratively optimizing each one in sequence.
In the general problem, with many orbital exponents, finding a minimum
involves searches on a many-dimensional surface with possibly many local
minima. One does not routinely optimize exponents in these larger problems.

Having described restricted closed-shell Hartree-Fock calculations in
conjunction with the H, and HeH ™ model systems, we now want to illustrate
the results of more realistic calculations on polyatomic molecules. We do
this not to provide a review of current calculations, but rather to illustrate
the main ideas behind all calculations of the closed-shell restricted Hartree-
Fock type, and to provide some feeling and intuition for how well (or how
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badly) such calculations compare with experiment. We will restrict our cal-
culations to H,, N,, and CO and molecules in the ten-electron series CH,,
NH ;, H,O, and FH. For each of these we will use a hierarchy of well-defined
basis sets. Prior to describing the results of such calculations, however, we
need to discuss the general question of polyatomic basis sets and describe
the specific basis sets we will be using.

3.6 POLYATOMIC BASIS SETS

There are probably as many basis sets defined for polyatomic calculations
as there are quantum chemists. The choice of a basis set is not nearly the
black art, however, that it may first appear. In our sample calculations we
will use a reasonably well-defined hierarchy of basis sets starting with a
minimal STO-3G basis and proceeding through the 4-31G basis, which
effectively doubles the number of functions, the 6-31G* basis, which adds
d-type functions to heavy atoms C, N, O, and F and finally, the 6-31G**
basis, which, in addition to d-type functions for heavy atoms, adds p-type
functions to hydrogen. By performing electronic structure calculations on a
small variety of molecules, using this hierarchy of basis sets, it is possible to
gain some insight into the size and characteristics of a basis set needed to
obtain a given level of calculational accuracy.

The above basis sets have been introduced by Pople and collaborators
(see Hehre et al. in Further Reading at the end of this chapter) and have
been used extensively, by a number of workers for calculations on a large
variety of molecules. Apart from a few instances, all the calculations in this
book use the STO-3G, 4-31G, 6-31G", and 6-31G"" hierarchy of basis
sets. By restricting our example calculations to a very limited set of mol-
ecules and the above basis sets, we are attempting to illustrate in a sys-
tematic way how specific attributes of a basis set affect calculated quantities.
We are not attempting to provide a general review of current calculations.
Such a review would be out of date very quickly. While the basis sets we use
are not necessarily optimum, and may themselves be out of date shortly,
they do have characteristics that can be used to illustrate all basis sets.

Our purpose in this section is to explicitly define the STO-3G, 4-31G,
6-31G*, and 6-31G** basis sets that we will be using in this and subsequent
chapters. In the process, however, we will describe attributes that are charac-
teristic of most of the basis sets that are in current use, and we will introduce
some of the notation and some of the mechanics of defining and choosing a
basis set. In particular, we first present a general treatment of contraction.

3.6.1 Contracted Gaussian Functions

In Subsection 3.5.1, when we defined the 1s STO-3G basis set of our model
calculations, we indicated some of the ideas pertinent to the concept of con-
traction. We review these briefly. There are two main considerations in the
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choice of a basis. The first is that one desires to use the most efficient and
accurate functions possible, in the sense that the expansion

Y, = }E C.id, (3.282)
u=1

will require the fewest possible terms for an accurate representation of the
molecular orbitals ;. From this consideration, Slater functions are better
than Gaussian functions. The second consideration in the choice of a basis
set is the speed of two-electron integral evaluation. Here Gaussian functions
have the advantage. By ®sing a basis set of contracted Gaussian functions
one can in a sense have one’s cake and eat it too. In this procedure, one lets
each basis function be a fixed linear combination (contraction) of Gaussian
functions (primitives). Prior to a calculation one chooses the exponents of
the primitives and the contraction coefficients so as to lead to basis functions
with desired qualities. The contracted basis functions might be chosen to
approximate Slater functions, Hartree-Fock atomic orbitals, or any other
set of functions desired. Integrals involving such basis functions reduce to
sums of integrals involving the primitive Gaussian functions. Even though
many primitive integrals may need to be calculated for each basis function
integral, the basis function integrals will be rapidly calculated provided the
method of computing primitive integrals is very fast.

To avoid confusion with a multitude of ¢’s we will use the symbol g
here for a normalized Gaussian function. A contraction thus has the form.

L
¢S - R, = Zl dpug (0 T — Rp) (3.283)
p=

where a,, and d,, are the contraction exponents and coefficients and L is
the length of the contraction. The normalized Gaussian primitive functions
are of the 1s, 2p, 3d, . . . type,

g1a, r) = (83 /n3) /4e ™o (3.284)
G2p.(0 1) = (128a%/n%)" /4 xe~ > (3.285)
93a,,(@, T) = (204847 /n%) /4xye o (3.286)

The simplifications that occur for integral evaluation using these functions
do not appear for the 2s, 3p, . ... Gaussians, and so any basis function of s
symmetry, for example a 2s or 3s Slater function, will be expanded in only
s Gaussians, with similar restrictions on the other symmetry types. The
origins R, of the primitives in (3.283) are almost always equal to R ,. Different
origins for the primitives in a contraction are used only with Gaussian lobe
basis sets. In these basis sets one approximates s, p, d, . . . functions as com-
binations of spherical 1s Gaussians (lobes) placed appropriately in space.
For example, a 2p Gaussian orbital can be approximated as closely as desired
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by two 1s Gaussian lobes of opposite sign placed an infinitesimal distance
apart. We will not be concerned with Gaussian lobes here.

A common way of determining contractions is from the results of atomic
SCF calculations. In these atomic calculations one uses a relatively large
basis of uncontracted Gaussians, optimizes all exponents, and determines
the SCF coefficients of each of the derived atomic orbitals. The optimized
exponents and SCF coefficients.can then be used to derive suitable contrac
tion exponents and contraction coefficients for a smaller basis set to be used
in subsequent molecular calculations. Let us first illustrate this with s-type
basis functions for hydrogen. Huzinaga® has determined coefficients and
exponents of Gaussian expansions that minimize the energy of a hydrogen
atom. With four Gaussian functions he obtains

W, = 0.50907¢,,(0.123317, r) + 0.474494, (0.453757, 1)
+ 0.13424g, (2.01330, r) + 0.01906g,,(13.3615,1)  (3.287)

The basis set is an uncontracted basis consisting of four functions of s-type
symmetry, i.e., it is a (4s) basis. A contracted basis set derived from this
would use the four Gaussian functions as primitives and contract them to
reduce the number of basis functions. There are a number of ways the above
four primitives might be contracted. One usually uses disjoint subsets of
primitives so that no primitive appears in more than one basis function.
From evidence on molecular calculations, it appears that a useful contrac-
tion scheme is one which leaves the most diffuse primitive uncontracted and
contracts the remaining three primitives into one basis function, with con-
traction coefficients just equal to the above coefficients (SCF coefficients in
the general case). That is,

@,(r) = ¢,15(0.123317, r) (3.288)

¢,(r) = N[0.47449g,,(0.453757, r) + 0.13424g,,(2.01330, )
+ 0.01906g,,(13.3615, r)]
= 0.8172384,,(0.453757, r) + 0.2312084,,(2.01330, r)
+ 0.032828¢,,(13.3615, 1) (3.289)

In the last equation, the contraction coefficients have been properly renor-
malized. This scheme leads to a contracted basis set of two s-type functions,
i, a [2s] contracted basis set, coming from a (4s) uncontracted basis set.
This defines a (4s)/[2s] contraction.

Huzinaga also determined relatively large uncontracted Gaussian (9s5p)
basis sets, with optimized exponents, for the first-row atoms Li to Ne
Dunning® has suggested useful contractions of these. As an example of the
procedure, consider a [3s2p] contracted basis for the oxygen atom. We are
going to contract the nine primitives of s type into three basis functions. On
inspecting the atomic SCF calculation we find that one of the nine primitives
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contributes strongly to both the 1s and 2s orbitals of the oxygen atom; this
function is left uncontracted.

&,(r) = g45(9.5322, 1) (3.290)

The two primitives, which are most diffuse, make a negligible contribution
to the 1s atomic orbital but are the chief contributors to the 2s atomic orbital.
They are contracted to give the second basis function,
@,(r) = N[0.595669,5(0.9398, r) + 0.52576g,,(0.2846, )]
= (0.563459g,,(0.9398, r) + 0.497338g,,(0.2846, r) (3.291)
where 0.59566 and 0.52576 are the coefficients of these primitives in the 2s
atomic orbital of the atomic SCF calculation. The last basis function consist
of the remainder of the nine primitives,
@3(r) = N[0.14017g,,(3.4136, r) + 0.35555¢,,(27.1836, 1)
+0.14389g,,(81.1696, r) + 0.04287g,,(273.188, r)
+ 0.00897g,,(1175.82, r) + 0.00118g,,(7816.54, r)]
= (0.241205g,,(3.4136,r) + 0.611832g,,(27.1836, r)
+ 0.247606¢,,(81.1696, r) + 0.073771g,,(273.188, )
+ 0.015436¢,,(1175.82, r) + 0.002031g,,(7816.54, r) (3.292)
where 0.14017, 0.35555, etc, are the coefficients of these primitives in the 1s
atomic orbital of the atomic SCF calculation.

In a similar way, the five primitives of p-type symmetry are contracted
to two basis functions. Here the most diffuse p-function is left uncontracted,

¢4(r) = g2,(0.2137, 1) (3.293)

and the remaining four primitives are contracted using the SCF coefficients
of the 2p atomic orbital

¢(r)= N[0.493764,,(0.7171, 1)+ 0.310669,,(2.3051, )
+0.09774g,,(7.9040, 1) +0.01541g,,(35.1832, 1)]
=0.6273759,,(0.71706, r)+0.3947274,,(2.30512, 1)
+0.1241899,,(7.90403, r)+0.019580g,,(35.1835, 1)  (3.294)

This (9s5p)/[3s2p] contraction reduces the number of basis functions
from 24 to 9. Remember the p,, p,, and p, are included for each p orbital
exponent. A calculation with either basis set would give almost identical
results in a calculation on the oxygen atom, however. The loss of variational
flexibility in molecular calculations is not extreme either. For example, a
calculation on the water molecule using the fully uncontracted (9s5p/4s)*°
basis set gives an energy of —76.0133, whereas the [3s2p/2s] contracted
. basis gives an energy of —76.0080, only 0.007%, above the much larger
calculation. Because the cost of an SCF calculation increases with the fourth
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power of the number of basis functions, the reduction from 32 functions to
13 functions is impressive.

3.6.2 Minimal Basis Sets: STO-3G

A minimal basis set is a relatively inexpensive one, which can be used for
calculations on quite large molecules. It is minimal in the sense of having
the least number of functions per atom required to describe the occupied
atomic orbitals of that atom. This is not quite accurate, since one usually
considers 1s, 2s and 2p, i.e., five functions, to constitute a minimal basis
set for Li and Be, for example, even though the 2p orbital is not occupied in
these atoms. The 2sp (2s and 2p), 3sp, 4sp, 34, . . ., etc. shells are considered
together. The minimal basis set thus consists of 1 function for H and He,
5 functions for Li to Ne, 9 functions for Na to Ar, 13 functions for K and Ca,
18 functions for Sc to K, . . ., etc. Because the minimal basis set is so small,
it is not one which can lead to quantitatively accurate results. It does,
however, contain the essentials of chemical bonding and many useful quali-
tative results can be obtained with it.

Because of the small number of functions in a minimal basis set, it is
particularly important that these functions be of near optimum form. This
immediately rules out a single Gaussian function. One would prefer to use
Slater functions or functions that closely resemble the known shape of
atomic orbitals. A significant advance in minimal basis calculations came
with the development of computer programs like “Gaussian 70,” which
could reproduce the results of minimal basis Slater orbital calculations using
contracted Gaussian functions. The STO-LG method uses a contraction of
L primitive Gaussians for each basis function, where the contraction coef-
ficients and exponents are chosen so that the basis functions approximate
Slater functions. We have already discussed the 1s STO-3G basis set in
Subsection 3.5.1.

The calculations in this book are restricted to a small number of mole-
cules, all of which include only the first row atoms up to fluorine Although
the STO-LG method has been extended to second row atoms, we will only
consider its formulation, and the formulation of the other basis sets which
follow, for first row atoms and, in particular, for H, C, N, O, and F. We are
therefore interested in the expansion of the 1s, 2s, and 2p Slater functions in
a set of primitive Gaussians

L

(1:? FC=10)= 'Zl d;, 15915(%;,15) (3.295)
L

¢(2:?F(‘: =10)= d;, 259 15(%;, 25p) (3.296)
i=1

L
¢(2:EF(C = 10) = 'Zl di,Zngp(ai,Zsp) (3297)
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where the contraction coefficients (d’s) and exponents (o’s) are to be obtained
by a least-squares fit which minimizes the integrals

[ar (450 - 557 @)
and

CGF(I.)] 2

[ar [4%50) - ¢S] + [dr [65500) -

One of the unique aspects of the STO-LG method and the fitting procedure
is the sharing of contraction exponents in 2sp, 3sp, ... shells. Thus the
exponents in (3.296) and (3.297) are constrained to be identical and the 2s and
2p fits are performed simultaneously as indicated by the second integral
above. The reason for this constraint is that if 2s and 2p functions have the
same exponents, then they have the same radial behavior, and during the
radial part of the integral evaluation they can be treated as one function.
That is, all integrals involving any sp shell are treated together and one
radial integration is sufficient for up to 256 = 4* separate integrals. This
grouping of basis functions by shells with shared exponents leads to con-
siderable efficiency in integral evaluation. The general STO-LG procedure
uses contraction lengths up to L = 6. The longer the length of the contraction,
however, the more time is spent in integral evaluation. It has been empirically
determined that a contraction of length 3 is sufficient to lead to calculated
properties that reproduce essentially all the valence features of a Slater
calculation, and STO-3G has become the de facto standard for minimal
basis calculations. Table 3.7 gives the STO-3G contraction exponents and
coefficients of Eqgs. (3.295) and (3.297). In the general notation, the STO-3G
contraction is (6s3p/3s)/[2s1p/1s].

Once the least-squares fits to Slater functions with orbital exponents
{ = 1.0 (Table 3.7) are available, fits to Slater functions with other orbital
exponents can be obtained by simply multiplying the «’s in (3.295) to (3.297)
by {2. It remains to be determined what Slater orbital exponents { to use in
electronic structure calculations. Two possibilities might be to use “best
atom” exponents ({ = 1.0 for H, for example) or to optimize exponents in
each calculation. The “best atom” exponents might be rather a poor choice

Table 3.7 STO-3G contraction exponents and coefficients
for 1s, 25, and 2p basis functions

Oy dls x2sp d2.1 d2P
0.109818 0.444635 0.0751386 0.700115 0.391957
0.405771 0.535328 0.231031 0.399513 0.607684
2.22766 0.154329 0.994203 —0.0999672 0.155916
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Table 3.8 Standard STO-3G exponents

Atom C 1s CZsp
H 1.24 —
Li 2.69 0.75
Be 3.68 1.10
B 4.68 1.45
C 5.67 1.72
N 6.67 1.95
o 7.66 225
F 8.65 2.55

for molecular environments, and optimization of nonlinear exponents is
not practical for large molecules, where the dimension of the space to be
searched is very large. A compromise is to use a set of standard exponents
which are the average values of exponents optimized for a set of small mole-
cules. The recommended STO-3G exponents are shown in Table 3.8.

The STO-LG basis is not the only possible minimal basis of course.
Stewart,!! for example, has determined fits of contracted Gaussian functions
to individual Slater functions, without the constraint of sharing exponents
in a shell. Rather than use Slater functions or fits to Slater functions, a
reasonable choice is contracted basis functions which closely approximate
the individually determined Hartree-Fock atomic orbitals of the atom.
Calculations suggest, however, that Slater functions with near optimum
exponents are better than these Hartree-Fock atomic orbitals for a minimal
basis; orbitals in molecules may be rather different than those in the con-
stituent atoms.

3.6.3 Double Zeta Basis Sets: 4-31G

A minimal basis set has rather limited variational flexibility particularly if
exponents are not optimized. The first step in improving upon the minimal
basis set involves using two functions for each of the minimal basis func-
tions—a double zeta basis set. The best orbital exponents of the two functions
are commonly slightly above and slightly below the optimal exponent of the
minimal basis function. This allows effective expansion or “contraction” of
the basis functions by variation of linear parameters rather than nonlinear
exponents. The SCF procedure will weight either the coefficient of the dense
or diffuse component according to whether the molecular environment
requires the effective orbital to be expanded or “contracted.” In addition,
an extra degree of anisotropy is allowed relative to an STO-3G basis since,
for example, p orbitals in different directions can have effectively different
sizes.
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The 4-31G basis set is not exactly a double zeta basis since only the
valence functions are doubled and a single function is still used for each
inner shell orbital. It may be termed a split valence shell basis set. The inner
shells contribute little to most chemical properties and usually vary only
slightly from molecule to molecule. Not splitting the inner shell functions
has some effect on the total energy, but little effect on dipole moments,
valence ionization potentials, charge densities, dissociation energies, and
most other calculated quantities of chemical interest. The 4-31G basis thus
consists of 2 functions for H and He, 9 functions for Li to Ne, 13 functions

for Na to Ar, . . ., etc. For hydrogen the contractions are
¢1s(r) = Z dl lsgls i, ls’ l') (3°298)
¢ (l') = gls(als’ ) (3299)

The outer hydrogen function ¢7 is uncontracted and the inner hydrogen
function ¢',, is a contraction of three primitive Gaussians. Apart from small
numerical differences in deriving the contraction coefficients and exponents,
the above basis functions are identical to the (4s)/[2s] functions of (3.288)
and (3.289). That is, the 4-31G basis is not fit to any particular functional
form but is derived by choosing the form of the contraction and then mini-
mizing the energy of an atomic calculation by varying the contraction
coefficients and exponents. The 4-31G acronym implies that the valence
basis functions are contractions of three primitive Gaussians (the inner
function) and one primitive Gaussian (the outer function), whereas the inner
shell functions are contractions of four primitive Gaussians. Hydrogen, of
course, does not have inner shells.

For the atoms Li to F, the contractions are

4
¢1s(r) = ‘-Zl di,lsgls(ai,lss l') (3300)
3
¢,2s(r) = _Z d;,2sgls(a:',2sps l') (3301)
¢,2’s(r) gls(aZsp’ ) (3302)
¢,2p(r) = _Z d;,2p92p(a;',23p’ l') (3303)
025(1) = g2,(0255, 1) (3.304)

As in the STO-3G basis, the 2s and 2p functions share exponents for
computational efﬁciency. Given the above functional forms, the contraction
coefficients d,, d, d%,, d’,, and d3, and the contraction exponents a,,
o3,y and a3, were explicitly varled until the energy of an atomic SCF

calculation reached a minimum. Unlike the STO-3G basis, which was
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Table 3.9 Standard 4-31G valence shell

scale factors
Atom U I
H 1.20 1.15
C 1.00 1.04
N 0.99 0.98
O 0.99 0.98
F 1.00 1.00

obtained by a least-squares fit to known functions, or a general contraction
scheme based on contraction of previously determined uncontracted atomic
calculations, the 4-31G basis sets were determined by choosing the specific
form (3.300) to (3.304) for the contractions and then optimizing all contrac-
tion parameters. That is, the basis set was obtained by contraction first, then
optimization, as opposed to optimization first, then contraction. In our
general notation, the 4-31G contraction is written as (8s4p/4s)/[3s2p/2s].
The basis consists of inner shell functions, inner valence functions, and outer
valence functions. These are contractions of 4, 3, and 1 primitive functions,
respectively.

Since the basis set is obtained from atomic calculations, it is still desirable
to scale exponents for the molecular environment. This is accomplished by
defining an inner valence scale factor {' and an outer valence scale factor {"
and multiplying the corresponding inner and outer o’s by the square of these
factors. Only the valence shells are scaled. Table 3.9 gives a set of standard
4-31G scale factors. Only those for H differ significantly from unity, although
the outer carbon functions are somewhat denser than in the atom.

Exercise 3.30 A 4-31G basis for He has not been officially defined.
Huzinaga,® however, in an SCF calculation on the He atom using four
uncontracted 1s Gaussians, found the coefficients and optimum exponents
of the normalized 1s orbital of He to be

o, C,

0.298073 0.51380
1.242567 0.46954
5.782948 0.15457
38.47497 0.02373

Use the expression for overlaps given in Appendix A to derive the contraction
parameters for a 4-31G He basis set.
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3.6.4 Polarized Basis Sets: 6-31G* and 6-31G**

The next step in improving a basis set could be to go to triple zeta, quadruple
zeta, etc. If one goes in this direction rather than adding functions of higher
angular quantum number, the basis set would not be well balanced. In the
limit of a large number of only s and p functions, one finds, for example,
that the equilibrium geometry of ammonia actually becomes planar. The
next step beyond double zeta usually involves adding polarization functions,
ie., adding d-type functions to the first row atoms Li-F and p-type functions
to H. To see why these are called polarization functions, consider the hy-
drogen atom. The exact wave function for an isolated hydrogen atom is
just the 1s orbital. If the hydrogen atom is placed in a uniform electric field,
however, the electron cloud is attracted to the direction of the electric field,
and the charge distribution about the nucleus becomes asymmetric. It is
polarized. The lowest order solution to this problem is a mixture of the
original 1s orbital and a p-type function, i.e., the solution can be considered
to be a hybridized orbital. A hydrogen atom in a molecule experiences a
similar, but nonuniform, electric field arising from its nonspherical environ-
ment. By adding polarization functions, i.e., p-type functions, to a basis set
for H we directly accommodate this effect. In a similar way, d-type functions,
which are not occupied in first row atoms, play the role of polarization
functions for the atoms Li to F. The 6-31G* and 6-31G** basis sets closely
resemble the 4-31G basis set with d-type basis functions added to the heavy
atoms (*) or d-type functions added to the heavy atoms, and p-type functions
added to hydrogen (**). It has been empirically determined that adding
polarization functions to the heavy atoms is more important than adding
polarization functions to hydrogen. The hierarchy of our basis sets is thus
STO-3G, 4-31G, 6-31G*, and 6-31G**,

The 6-31G* and 6-31G** basis sets are formed by adding polarization
function to a 6-31G basis. The form of the 6-31G contractions are identical
to those of the 4-31G basis, except that the inner shell functions (1s only, for
Li to F) become a contraction of six primitive Gaussians rather than four.
The 6-31G optimization was performed from the beginning and so the
valence functions are not identical to those of the 4-31G basis, but are very
similar. The 6-31G and 4-31G basis sets give almost identical results for
valence properties although the 6-31G basis gives lower energies, because
of the improvement in the inner shell.

The d-type functions that are added to a 6-31G basis to form a 6-31G*
basis are a single set of uncontracted 3d primitive Gaussians. For com-
putational convenience there are “six 3d functions” per atom—3d,,, 3d,,,
3d,., 3d,,, 3d,,, and 3d,,. These six, the Cartesian Gaussians, are linear
combinations of the usual five 3d functions—3d,,, 3d,._,:, 3d,,, 3d,,, and
3d,: and a 3s function (x2 + y? + z2). The 6-31G* basis, in addition to adding

polarization functions to a 6-31G basis, thus includes one more function of
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s-type symmetry. The contraction is thus (11s4pld/4s)/[4s2pld/2s] and the
basis set includes 2 functions for H and 15 functions for Li to F. A standard
Gaussian exponent for the six 3d functions of a = 0.8 has been suggested
for C,N, O, and F.

The 6-31G** basis differs from the 6-31G* basis by the addition of one
set of uncontracted p-type Gaussian primitives for each H. A standard
Gaussian exponent of & = 1.1 has been suggested for these functions. The
6-31G** contraction is thus (11s4p1d/4s1p)[4s2p1d/2s1p] and each hydrogen
now includes five basis functions.

Exercise 3.31 Determine the total number of basis functions for STO-
3G, 4-31G, 6-31G*, and 6-31G** calculations on benzene.

Calculations at the 6-31G* and 6-31G** level provide, in many cases,
quantitative results considerably superior to those at the lower STO-3G and
4-31G levels. Even these basis sets, however, have deficiencies that can only
be remedied by going to triple zeta or quadruple zeta, adding more than one
set of polarization functions, adding f~type functions to heavy atoms and
d-type functions to hydrogen, improving the basis function description of
the inner shell electrons, etc. As technology improves it will be possible to
use more and more accurate basis sets.

3.7 SOME ILLUSTRATIVE CLOSED-SHELL
CALCULATIONS

In this section, we illustrate results that are characteristic of Hartree-Fock
calculations on the ground state of closed-shell molecules. Now that we
have discussed polyatomic basis sets and the closed-shell restricted Hartree-
Fock procedure, we are in a position to appreciate the results and the
methodology of sample SCF calculations. The results of an extremely large
number of SCF calculations are now available in the literature; we make
no attempt to review these calculations. Instead, we apply a well-defined
hierarchy of basis sets to a small set of “typical” molecules, and use these
calculations to illustrate the order of accuracy expected in the general SCF
calculation. By restricting our calculations to a few well-defined basis sets
and a small set of molecules, we will be able to apply the various methods of
later chapters, which go beyond the Hartree-Fock approximation, to the
same collection of basis sets and molecules. In this way, we hope to give a
more systematic illustration of the results obtained from the many com-
putational methods of quantum chemistry than would be possible by
simply reviewing selected results available in the literature. Thus our purpose
here, in addition to illustrating SCF results themselves, is to display Hartree-
Fock values of a small number of calculated quantities, for comparison with
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Table 3.10 Standard geometries used in
calculations

Molecule Bond length (a.u.) Bond angle

H, 1.400
Co 2.132
N, 2074
CH, 2050 109.47°
NH, 1913 106.67°
H,0 1.809 104.52°
FH 1.733

better values obtained in later chapters. In some cases, the Hartree-Fock
results of this section are even qualitatively wrong, but, as we shall see later,
these errors are corrected by including the effects of correlation.

The molecules we will use henceforth are H,, isoelectronic N, and CO,
and the ten-electron series, CH,, NH;, H,O, and FH. The standard geom-
etries at which all calculations, unless otherwise indicated, have been carried
out are shown in Table 3.10. These “experimental” values are close but not
always identical to values obtained in the “best” or most recent structure
determination. The small set of molecules we have chosen cannot, of course,
illustrate the total wealth of chemistry being approached by ab initio cal-
culations. They do illustrate, however, some of the interesting quantities
that can be derived from an SCF calculation. When we discuss open-shell
calculations in the next section, we will introduce a few additional molecules.
For the most part, however, the illustrative calculations in this book are
performed on the molecules of Table 3.10.

3.7.1 Total Energies

Perhaps the primary quantity available in any ab initio calculation is the
total energy. The total energy is the electronic energy (the output of the
quantum mechanical calculation) plus the classical nuclear repulsion energy.
In the SCF approximation, the electronic energy is variational and the
“better” the basis set, the lower is the total energy. As the basis set becomes
more and more complete the total energy approaches the Hartree-Fock
limit. This limit can sometimes be estimated from large basis set calculations.
By the variational principle, the Hartree-Fock-limit energy is still above the
“exact” energy, which here can be taken as the energy obtained from an
exact solution to the nonrelativistic Schrodinger equation in the Born-
Oppenheimer approximation. In very accurate calculations on the atoms
He, Be, etc., proper account must be taken of relativistic and Born-Oppen-
heimer corrections when comparing these “exact” energies with experimental
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ones. For most purposes in quantum chemistry these corrections can be
assumed to be negligible and “exact” results equated to experimental results.

Tables 3.11 to 3.13 show the total energies obtained for the molecules
of Table 3.10 using the four basis sets, STO-3G, 4-31G, 6-31G*, and 6-31G**.
H, has no inner shells, or heavy atoms for d-type polarization functions, so
the 6-31G* basis set is equivalent to the 4-31G basis set for this molecule.
Similarly, N, and CO have no hydrogen atoms to add p-type polarization

Table 3.11 SCF total energies (a.u.) of

H, with the standard basis sets
Basis set Energy
STO-3G ~1.117
431G ~1.127
6-31G** -1.131
HF-limit* -1.134

2J. M. Schulman and D. N. Kaufman, J. Chem.
Phys. 53: 477 (1970).

Table 3.12 SCF total energies (a.u.) of N,
and CO with the standard basis sets

Basis set N, CO
STO-3G —107.496 -111.225
4-31G ~108.754 —112.552
6-31G* —108.942 —-112.737
HF-limit* - 108.997 —112.791

%P. C. Hariharanand J. A. Pople, Theoret. Chim.
Acta 28: 213 (1973).

Table 3.13 SCF total energies (a.u.) for the ten-electron
series with the standard basis sets

Basis set CH, NH, H,O FH
STO-3G —39.727 —-55.454 - 74.963 —-98.571
4-31G —40.140 —56.102 —-75.907 —99.887
6-31G* -40.195 —56.184 -76.011 - 100.003
6-31G** —-40.202 —56.195 - 76.023 -100.011
HF-limit° —40.225 ~56.225 -~ 76.065 —100.071

¢ P. C. Hariharan and J. A. Pople, Theoret. Chim. Acta 28: 213
(1973).
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functions to, so the 6-31G™** basis set is equivalent to the 6-31G* basis set.
These absolute energies in themselves are rather uninteresting; chemical
energetics is concerned with energy differences not absolute energies.

Exercise 3.32 Use the results of Tables 3.11 to 3.13 to calculate, for
each basis set and at the Hartree-Fock limit, the energy difference for the
following two reactions,

N2 + 3H2 — 2NH3 AE = ?

Are the results consistent for different basis sets? Does Hartree-Fock theory
predict these reactions to be exoergic or endoergic? The experimental
hydrogenation energies (heats of reaction AH®) at zero degrees Kelvin are
~18.604 kcal mol~! (N,) and —45.894 kcal mol~! (CO), with 1 a.u. of
energy equivalent to 627.51 kcal mol ™1,

Differences in the zero-point vibrational energies of reactants and
products also contribute to reaction energies. From the experimental
vibrational spectra, the 3N-6 (or 3N-5) zero-point energies (hvy/2) for the
relevant molecules (with degeneracies in parenthesis) are:

Molecule hvy/2 (kcal mol ™ 1)
H, 6.18
N, 335
CO 3.08
H,O0 2.28
5.13
5.33
NH, 1.35
2.32(2)
4.77
4.85(2)
CH, 1.86(3)
217Q2)
4.14
4.2(3)

Calculate the contribution of zero-point vibrations to the energy of the
above two reactions. Is it a reasonable approximation to neglect the effect
of zero-point vibrations?

Unfortunately, energy differences satisfy no variational principle, and it
is often difficult to estimate the error in an energy difference. Provided
equivalent basis sets are used for each species, the error in an energy difference
will be, however, much less than the error in the corresponding absolute
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energies. As the last exercise shows, the SCF approximation often gives valid
qualitative results for an energy change, even the energy change involved in
a chemical reaction. In the general case, however, some estimate of the
changes in correlation energies will be necessary for valid quantitative results.

3.7.2 Ionization Potentials

Koopmans’ theorem provides the theoretical justification for interpreting
Hartree-Fock orbital energies as ionization potentials and electron affinities.
For the series of molecules we are using, the lowest virtual orbital always
has a positive orbital energy, and thus Hartree-Fock theory predicts that
none of these molecules will bind an electron to form a negative ion. Hartree-
Fock almost always provides a very poor description of the electron affinity,
and we will not consider the energies of virtual orbitals further.

The occupied orbital energies, on the other hand, commonly provide a
reasonable first description of ionization potentials. Except for the interesting
case of N,, Koopmans’ ionization potentials for our series of molecules are
in reasonable agreement with experiment.

The molecule H, has only one occupied orbital. The negative of the
energy of this occupied orbital for the various basis sets is shown in Table 3.14,
and all the H, orbitals are shown in Fig. 3.9. A small change in the occupied
orbital energy is observed in going beyond the minimal basis set, but beyond
the minimal basis the orbital energy remains fixed at —0.595 Hartrees. The
predicted ionization potential of + 0.595 Hartrees is only in error by ~2Y,
In Table 3.14, as well as in subsequent tables, all ionization potentials are
vertical rather than adiabatic. A vertical transition is one in which the final
state has the same nuclear geometry as the initial state, rather than its own
equilibrium nuclear geometry (adiabatic transition). The excellent agreement
between the Koopmans’ value and the experimental value arises because of
fortuitous cancellation of the correlation and relaxation effects, which are
neglected in the Koopmans’ approximation. Correlation has no effect on

Table 3.14 lonization potential (a.u.) of
H, obtained via Koopmans’ theorem

Basic set Ionization potential
STO-3G 0.578
4-31G 0.596
6-31G** 0.595
Near-HF-limit* 0.595
Experiment 0.584

¢ J. M. Schulman and D. M. Kaufman, J. Chem.
Phys. 83: 477 (1970).
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Figure 3.9 Orbital energies of H,.

the final one-electron H; but lowers the energy of the initial H, state.
Relaxation, on the other hand, lowers the energy of the final H; state. These
two effects very nearly cancel in this example.

Table 3.15 shows the first two Koopmans’ ionization potentials of CO.
The highest occupied molecular orbitals of this molecule are the bonding
S¢ and 17 orbitals formed mainly from linear combinations of the 2p orbitals

Table 3.15 The first two ionization poten-
tials (a.u.) of CO obtained via Koopmans’

theorem
Ion symmetry
Basis set 3 N
STO-3G 0.446 0.551
431G 0.549 0.640
6-31G* 0.548 0.633
Near-HF-limit* 0.550 0.640
Experiment 0.510 0.620

“W. M. Huo, J. Chem. Phys. 43: 624 (1965).
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of the individual C and O atoms. Ionization of an electron from the 5¢
orbital leads to an ion of 2X symmetry while ionization of an electron from
the 1n orbital leads to an ion of 2IT symmetry. A primary question in the
ionization of CO, as well as in the ionization of isoelectronic N, is whether
the first ionization removes an electron from the 5o or the 1x orbital. In the
Hartree-Fock approximation, the equivalent question is whether the 5¢ or
17 orbital is the highest lying occupied orbital.

For CO, the calculations agree with experiment in predicting that the
5o orbital lies above the 1n orbital. The usual argument, which rationalizes
this result, is that, while 2po orbitals on C and O interact more strongly than
the corresponding 2pn orbitals on C and O and a bonding o orbital would
normally lie below a corresponding bonding n orbital, the 5¢ orbital is
“pushed” up by interaction with the lower 46 antibonding orbital formed
from 2s orbitals on C and O. In any event, the results of ab initio SCF cal-
culations are in good agreement with experiment.

The molecule N, is isoelectronic with CO and has a similar orbital
structure. Unlike CO, however, a fundamental problem arises in using
Koopmans’ theorem to interpret its ionization spectra. Table 3.16 compares
calculated Koopmans’ ionization potentials for N, with experiment, and
Fig. 3.10 shows the calculated orbital energies. The first point to notice is
that the STO-3G calculation is not in agreement with calculations using
better basis sets and calculations at the Hartree-Fock limit. The STO-3G
calculation predicts the 3o, orbital to be higher lying than the 1z, orbital,
whereas, the “correct” Hartree-Fock result is that the 1m, orbital is the
highest occupied orbital. As Fig. 3.10 shows, in homonuclear N,, unlike
heteronuclear CO, the 36 ,(5¢ in CO) orbital has a different symmetry than
the 20,(40 in CO) orbital and, hence, the interaction which pushes these
two orbitals apart is missing in N,, but present in CO. This argument can

Table 3.16 The first two ionization poten-
tials (a.u.) of N, obtained via Koopmans’

theorem
Ion symmetry
Basis set z i
STO-3G 0.540 0.573
4-31G 0.629 0.621
6-31G* 0.630 0.612
Near-HF-limit® 0.635 0.616
Experiment 0.573 0.624

*P. E. Cade, K. D. Sales, and A. C. Wahl, J.
Chem. Phys. 44: 1973 (1966).
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be used to rationalize why Hartree-Fock calculations predict the highest
occupied orbital to be of 7 symmetry in N, but of ¢ symmetry in CO.

The second and most important point of Table 3.16 is that the “correct”
Hartree-Fock results are in qualitative disagreement with experiment. In
the molecular orbital Hartree-Fock model, the 1z, orbital is the highest
occupied orbital, yet the lowest experimental ionization potential corre-
sponds to the production of an ion with £, symmetry. This implies a break-
down of the simple orbital picture of ionization. The Hartree-Fock picture
is an approximation. For the case of N, this approximation is not sufficiently
accurate for even a qualitative understanding of the ionization phenomena.
As we shall see in Chapters 4 and 7, when the single determinant Hartree-
Fock model is replaced by a multideterminantal model, with its associated
inclusion of correlation effects, theoretical calculations and experiment
ultimately agree on the ionization spectra of N,.

Table 3.17 shows the calculated and experimental results for the first
ionization potential of molecules in the ten-electron series, CH,, NH;, H,O,
and FH. The largest basis set gives ionization potentials that are all slightly
larger than experimental values, with the agreement becoming slightly
worse as one moves to the right in the periodic table. The correct ordering
FH > CH, > H,0 > NH; is reproduced, except with the minimal basis set.
Figure 3.11 shows all the occupied orbitals and the first virtual orbital for
this ten-electron series, using the largest 6-31G** basis set. The lowest




198 MODERN QUANTUM CHEMISTRY

Table 3.17 The lowest ionization potentials (a.u.)
of the ten-electron series obtained via Koopmans’

theorem
Basis set CH, NH, H,0 FH
STO-3G 0.518 0.353 0.391 0.464
4-31G 0.543 0414 0.500 0.628
6-31G* 0.545 0.421 0.498 0.628
6-31G** 0.543 0.421 0.497 0.627
Near-HF-limit  0.546°  0428®  0.507°  0.650
Experiment 0.529 0.400 0.463 0.581

* W. Meyer, J. Chem. Phys. 58: 1017 (1973).
® A. Rauk, L. C. Allen, and E. Clementi, J. Chem. Phys.
52: 4133 (1970).
¢ B. J. Rosenberg and 1. Shavitt, J. Chem. Phys. 63: 2162

(1975).

4¢P E.Cadeand W. M. Huo, J. Chem. Phys. 47: 614 (1967).
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molecular orbital is essentially the 1s inner-shell atomic orbital of the heavy
atom. The second molecular orbital is comprised mainly of the 2s orbital
of the heavy atom, particularly as one moves to the right in the periodic
table. In FH this molecular orbital is very atomic in nature and has much
of the character of an inner shell. The average energy of the three highest
occupied orbitals also decreases slightly as one moves to the right in the
periodic table, but the individual energies of these three orbitals are deter-
mined by the symmetry of the system. That is, the reason CH, does not have
the lowest ionization potential, in line with the trend in the rest of the series,
is that the tetrahedral symmetry causes these three orbitals to be degenerate.
If CH, was distorted from its tetrahedral symmetry, its first ionization
potential would decrease.

Figure 3.12 shows all the orbital energies of H,O, using our four standard
basis sets. In this as in other examples, the occupied orbital spectrum is
nearly invariant to the basis set once the basis set is of double zeta quality
or better. The minimal basis set leads to ionization potentials that are
significantly different from those given by better basis sets.

The Koopmans’ approximation to ionization potentials provides a
valuable qualitative tool for interpreting and making assignments to ex-
perimental spectra. Like any other Hartree-Fock result, however, it is not
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truly quantitative and, in some cases, it may even give an incorrect qualita-
tive picture.

3.7.3 Equilibrium Geometries

Perhaps the most common use of electronic structure calculations is to
predict the equilibrium geometry of molecules. In the Born-Oppenheimer
approximation, the total energy, as a function of the coordinates of the nuclei,
defines a potential surface. The motion of the nuclei on this potential sur-
face defines the possible chemical reactions, the molecular vibrations, etc.
The points on the potential surface of most immediate interest are the
stationary points. The saddle points define transition states, and the minima
define equilibrium geometries. Although one would like to know the com-
plete details of the potential surface, this quickly becomes an impossible
task as the number of nuclei and the 3N-6 degrees of freedom increase. For
moderate-sized molecules, however, it may still be possible to find the po-
tential surface minimum. This constitutes a prediction of chemical structure.
In cases where the number of degrees of freedom is very large, it may be
sufficient to fix certain geometric variables at their standard or expected
values and optimize only the geometric variables for which little a priori
information is available.

Since one cannot, in general, obtain a potential surface which is close
to the exact Born-Oppenheimer surface, the best that can be hoped for is a
potential surface which is closely parallel to the exact surface. As our dis-
cussion of minimal basis H, (c.f. Fig. (3.5)) has shown, the potential surface
obtained from a closed shell restricted Hartree-Fock calculation will not be
parallel to, nor even qualitatively resemble, the exact potential surface in
regions of the surface characterizing the stretching and breaking of a bond
if, as is the usual case, the dissociation products have open shells. The
restricted closed-shell Hartree-Fock procedure is thus inappropriate for the
general exploration of a potential surface. In most cases, however, the
restricted Hartree-Fock potential surface is “reasonably” parallel to the exact
surface near the region of a minimum. That is, restricted Hartree-Fock
predictions of equilibrium geometries provide reasonably valid approxima-
tions to experimental values.

The problem of finding an equilibrium geometry is equivalent to the
mathematical problem of nonlinear unconstrained minimization. Histori-
cally, there have been a number of different methods used for such minimi-
zations. An inefficient, but conceptually simple, procedure is the line search.
Here one varies only one variable at a time until a minimum for that variable
is obtained. One cycles through all of the variables a number of times,
varying each one in sequence, until the optimum values no longer change.
If there is a large coupling between variables, this procedure may converge
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Table 3.18 SCF equilibrium bond lengths

Basis set Bond length
STO-3G 1.346
431G 1.380
6-31G** 1.385
Experiment 1.401

very slowly. Other procedures depend on knowing the first detivatives and
possibly the second derivatives of the energy with respect to the nuclear
coordinates. These are much better procedures but require an evaluation
of a number of derivatives. In the past these derivatives have been cal-
culated numerically, but there are now a number of programs that can
calculate these derivatives by efficient analytical procedures and use them
to generate equilibrium geometries automatically. Appendix C discusses
the basic ideas behind these important developments.

Table 3.18 gives the calculated equilibrium bond lengths of H, with
our standard basis sets. The calculated bond length of 1.385 a.u. obtained
from using the 6-31G** basis set is close to the Hartree-Fock limit value.
The error of 0.016 a.u. (~1%) in the bond length is not uncharacteristic of
what can be expected from a good ab initio SCF calculation, although the
average absolute error is more commonly ~0.02-0.04 a.u.

Table 3.19 gives the calculated bond lengths for CO and N, and Table
3.20 the calculated bond lengths for CH,, NH;, H,0, and FH. The error at
the Hartree-Fock limit is somewhat larger for a distance between two
heavy atoms than it is for an X-H distance. In these, as in most other mole-
cules, bond lengths predicted by Hartree-Fock limit calculations are too

Table 3.19 SCF equilibrium bond lengths
(a..) of N, and CO

Basis set N, CO
STO-3G 2.143 2.166
431G 2.050 2,132
6-31G* 2.039 2.105
Near-HF-limit 2013 2.081°
Experiment 2074 2.132

“P. E. Cade, K. D. Sales, and A.C. Wahl, J.
Chem, Phys. 44: 1973 (1966).
*W. M. Huo, J. Chem. Phys. 43: 624 (1965).
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Table 3.20 SCF equilibrium bond lengths (a.u.) of
the ten-electron series

Basis set CH, NH, H,0 FH
STO-3G 2.047 1.952 1.871 1.807.
4-31G 2.043 1.873 1.797 1.742
6-31G* 2,048 1.897 1.791 1.722
6-31G** 2,048 1.897 1.782 1.703
Near-HF-limit 2,048 1.890° 1.776° 1.696*
Experiment 2.050 1912 1.809 1.733

“W. Meyer, J. Chem. Phys. 58: 1017 (1973).

* A. Rauk, L. C. Allen, and E. Clementi, J. Chem. Phys.
$2: 4133 (1970).

¢ B. J. Rosenberg, W. C. Ermler, and 1. Shavitt, J. Chem.
Phys. 65: 4072 (1976).

4P.E.Cadeand W. J. Huo, J. Chem. Phys. 47: 614 (1967).

short. The average error in a bond length predicted by poorer basis sets,
such as the minimal STO-3G basis set, is larger than for basis sets at the
Hartree-Fock limit, and is commonly ~0.05-0.10 a.u.

Values for the calculated bond angles in NH; and H,O are shown in
Table 3.21. There is quite reasonable agreement (~ 1°-2°) at the Hartree-
Fock limit. These bond angles are not particularly good at the double zeta
(4-31G) level, and it appears that d-type functions in the basis set are necessary
for a quantitative description of the angle in these molecules. If the limit is
taken of adding only s- and p-type functions to a basis set for NH;, the
predicted geometry becomes planar! This illustrates the necessity of a
balanced basis set.

Table 3.21 SCF equilibrium bond angles

for NH, and H,0

Basis set NH, H,O
STO-3G 104.2 100.0
4-31G 115.8 111.2
6-31G* 107.5 105.5
6-31G** 107.6 106.0
Near-HF-limit 107.2° 106.1%
Experiment 106.7 104.5

2A. Rauk, L. C. Allen, and E. Clementi,
J. Chem. Phys. 52: 4133 (1970).

®B. J. Rosenberg, W. C. Ermler, and I. Shavitt,
J. Chem. Phys. 65: 4072 (1976).
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As with any other calculated quantity, the predictions of equilibrium
geometries obtained from the ab initio SCF procedure cannot provide truly
quantitative agreement with experiment. Nevertheless, such geometries
almost always give the correct trends when comparing a series of related
molecules; the a priori prediction of chemical structure has been one of the
most successful aspects of Hartree-Fock calculations. The book by Hehre
et al. (see Further Reading) critically evaluates the performance of SCF
calculations in predicting equilibrium geometries, with many examples.

3.7.4 Population Analysis and Dipole Moments

An ab initio SCF calculation produces a one-electron charge density p(r)
describing the probability of finding an electron, i.e.,

pir)=3 3 P,o0)p}r) (3.305)

This charge density is commonly plotted as a contour map for visual inter-
pretation of the charge density. Alternatively, one would like to have more
quantitative characterizations of the charge density. One way of doing this
is to calculate the moments of the charge—dipole moment, quadrupole
moment, etc. In addition, chemists would like to ascribe portions of the
charge to specific atoms in line with their intuitive notions. As we have
described previously, there is no rigorous way of doing this. Nevertheless, a
population analysis may sometimes be useful for interpretive purposes. As
an illustration of such an analysis, Tables 3.22 and 3.23 contain the net
positive charge on each of the hydrogens in the 10-electron series, from
either a Mulliken or a Lowdin population analysis. In agreement with
standard electronegativity arguments, the hydrogen atom becomes more
positively charged as one goes to the right in the periodic table. Very little
can be said about the absolute magnitude of these charges, however. It is
particularly dangerous to compare numbers for different basis sets. For
example, a 6-31G* calculation on CH, compared to an STO-3G calculation

Table 3.22 A Mulliken SCF population
analysis for the ten-electron series. The
entries are the net charges on the hydrogens

Basis set CH, NH, H,0 FH

STO-3G 0.06 0.16 0.18 0.21
4-31G 0.15 0.30 0.39 0.48
6-31G* 0.16 0.33 0.43 0.52
6-31G** 0.12 0.26 0.34 0.40
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Table 3.23 A Léwdin SCF population anal-
ysis for the ten-electron series. The entries
are the net charges on the hydrogens

Basis set CH, NH, H,0 FH

STO-3G 0.03 0.10 0.13 0.15
431G 0.10 0.20 0.28 0.36
6-31G* 0.16 0.27 0.36 0.45
6-31G** 0.11 0.18 0.23 0.27

on NH, would predict the CH bond in methane to be more polar than the
NH bond in ammonia. Since one adds orbitals only to hydrogen atoms in
going from the 6-31G* to 6-31G** basis set, the 6-31G** basis set always
assigns more electrons (less positive charge) to the hydrogens than does the
6-31G* basis set. In spite of problems, a population analysis can be a useful
interpretive device when used properly.

Calculations of the dipole moment of CO are shown in Table 3.24. This
particular calculation has had an interesting history, since there has been
considerable disagreement as to the proper sign of the dipole moment. The
correct experimental result is that the negative end of the molecule is carbon,
not oxygen as simple electronegativity arguments would suggest. Although
a minimal basis set gives the right sign, all SCF calculations with a basis set
of double zeta quality or better predict the wrong sign. The difficulty arises
because of the relatively small magnitude of the dipole moment, a result of
the cancellation of two large and opposite contributions. One contribution
is that of net charge which, in line with electronegativity arguments, has
oxygen more negative. In addition, however, there is a lone pair of electrons
on carbon, directed away from the bond. This asymmetry of the charge on
carbon leads to an additional contribution to the dipole moment, which is

Table 3.24 SCF dipole moment (a.u.) of
CO for the standard basis sets. A positive
dipole moment corresponds to C"O*

Basis set Dipole moment
STO-3G 0.066
4-31G -0.237
6-31G* —-0.131
Near-HF-limit* -0.110
Experiment 0.044

°A. D. McLean and M. Yoshimine, Intern. J.
Quantum Chem. 18: 313 (1967).
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Table 3.25 SCF dipole moments (a.u.) for
the ten-electron series and the standard

basis sets
Basis set NH, H,0 FH
STO-3G 0.703 0.679 0.507
431G 0.905 1.026 0.897
6-31G* 0.768 0.876 0.780
6-31G** 0.744 0.860 0.776
Near-HF-limit  0.653°  0.785*  0.764°
Experiment 0.579 0.728 0.716

“A. Rauk, L. C. Allen, and E. Clementi, J.
Chem. Phys. 52: 4133 (1970).

*B.J. Rosenberg and 1. Shavitt, J. Chem. Phys.
63: 2162 (1975).

‘P. E. Cade and W. M. Huo, J. Chem. Phys.
45: 1063 (1966).

opposite to the first contribution. The cancellation, leading to a small posi-
tive (C"O™) dipole moment, is not reproduced with sufficient accuracy in
the SCF calculations. As we shall see in the next chapter, this disagreement
between theory and experiment disappears when proper account is taken of
correlation effects.

Table 3.25 contains the calculated dipole moments for NH,, H,O, and
FH using our standard basis sets. Only at the 6-31G* level and beyond is
the proper trend H,O > FH > NH, reproduced. At the Hartree-Fock
limit the calculated dipole moments are somewhat too large, but the trend
is well reproduced. The 6-31G** basis set still appears to be inadequate for
accurate calculation of dipole moments, since the values obtained with it
are still rather distant from Hartree-Fock-limit values.

38 UNRESTRICTED OPEN-SHELL HARTREE-FOCK:
THE POPLE-NESBET EQUATIONS

At the beginning of this chapter we derived and discussed formal properties
of the Hartree-Fock equations independent of any particular form for the
spin orbitals. We then introduced a set of restricted spin orbitals and have
since been concerned solely with restricted closed-shell calculations of the

type
|‘PRHF> = |¢1'p1 ) (3.306)

Obviously, not all molecules, nor all states of closed-shell molecules, can be
described by pairs of electrons in closed-shell orbitals, and we now need to
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generalize the previous closed-shell formalism to accommodate situations
in which a molecule has one or more open-shell (unpaired) electrons. That
is, we need to consider unrestricted wave functions of the type

[Pour> = Wigh - > (3.307)

In the previous chapter we gave a preliminary description of open-shell
determinants (Section 2.5); we now obtain the SCF equations for unrestricted
calculations.

In dealing with open-shell problems, there are two common approaches:
the restricted open-shell, and the unrestricted open-shell Hartree-Fock
procedures. In the restricted open-shell formalism, all electrons, except
those that are explicitly required to occupy open-shell orbitals, occupy
closed-shell orbitals. The advantage of this procedure is that the wave func-
tions one obtains are eigenfunctions of the spin operator &2. The disadvan-
tage is that the constraint of occupying orbitals in pairs raises the variational
energy. In addition, the spatial equations defining the closed- and open-shell
orbitals of restricted open-shell Hartree-Fock theory are somewhat more
involved or at least less straightforward than the spatial equations of un-
restricted Hartree-Fock theory. For treating open-shells our emphasis is on
unrestricted calculations—mainly for reasons of simplicity and generalty.

As we have discussed previously, a restricted Hartree-Fock description
is inappropriate at long bond lengths for a molecule like H,, which disso-
ciates to open-shell species. This problem can be solved to a certain extent
by using an unrestricted wave function at long bond lengths. In addition to
describing unrestricted wave functions for “true” open shells (doublets,
triplets, etc.), we will spend some time in this section analyzing the “singlet”
dissociation problem with our minimal basis H, model. An unrestricted
wave function will allow a closed-shell molecule like H, to dissociate to
open-shell atoms.

In this section, then, we first introduce a set of unrestricted spin orbitals
to derive the spatial eigenvalue equations of unrestricted Hartree-Fock
theory. We then introduce a basis set and generate the unrestricted Pople-
Nesbet matrix equations, which are analogous to the restricted Roothaan
equations. We then perform some sample calculations to illustrate solutions
to the unrestricted equations. Finally, we discuss the dissociation probiem
and its unrestricted solution.

3.8.1 Open-Shell Hartree-Fock: Unrestricted Spin Orbitals
The general Hartree-Fock eigenvalue equation, in terms of spin orbitals, is

JWx(1) = ei(1) (3.308)

What we want to do now is to introduce the specific unrestricted form for the
spin orbitals {y;} and derive, from the above general Hartree-Fock equation,
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the spatial equations which determine the unrestricted spatial orbitals. The
procedure that we use here is quite analogous to that of Subsection 34.1,
where we derived the spatial equations determining restricted spatial orbitals.
We will not repeat all details of the derivation.

Analogous to Eq. (3.110) for restricted spin orbitals, an unrestricted set
of spin orbitals has the following form

(x)=<"" 3.309

That is, electrons of a spin are described by a set of spatial orbitals {y}|j =
1,2,..., K}, and electrons of f spin are described by a different set of spatial
orbitals {y/#| j = 1,2,..., K}. In our previous restricted case y = yf = y,.
We are now allowing electrons of a and B spin to be described by different
spatial functions.

To derive the spatial equations defining {5} and {#}, we need to insert
Eq. (3.309) for the spin orbitals {y;} into the general Hartree-Fock equation
(3.308) and integrate out the spin variable w. For simplicity, we will con-
centrate on the equation defining ¥ and use the symmetry between « and f
spins to write down the corresponding equations defining y/4. Substituting
Eq. (3.309) into Eq. (3.308) leads to

S5 )a(w,) = eyjr)a(w;) (3.310)

Now, ¢; is the energy of the spin orbital x; = yja. Since the spin orbitals for
electrons of a and f§ spin have different spatial parts, their energies will also
be different. In the above case ¢; = ¢}. There will be a corresponding set of
orbital energies {ef|j =1, 2, ..., K} for electrons of B spin. Thus

S5 a(w,) = efiir,)a(w,) (3.311)

If we now multiply this equation by «*(w,) and integrate over spin we get
S W) = ejy1) (3.312)
SPWAL) = i) (3.313)

as the spatial equations defining the spatial orbitals y and y/4. The spatial
Fock operators f%(1) and f#(1) are defined by

foe) = [dooy a¥()f(rs, 01)e(@,) (3314)
A = [doy BH@1)fr, 01)B@1) (3:315)
We could use the spin orbital definition (3.115) of f(r,, w,) to perform

these integrations and work out explicit formulas for f*and f#. Alternatively,
we can just write down expressions for f* and f# by considering the possible
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interactions defined by any unrestricted determinant,

b1

v vi

The operator f%(1) is the kinetic energy, nuclear attraction, and effective
potential of an electron of « spin. The effective interactions of an electron of
a spin include a coulomb and exchange interaction with all other electrons
of a spin plus only a coulomb interaction with electrons of § spin. Thus

Ne= N8
5 =h(1) + Y [Jx1) - K¥D] + Y. J41) (3.316)

where the two sums in this equation are over the N orbitals /% occupied by
electrons of « spin and the Nf orbitals £ occupied by electrons of # spin.
The kinetic energy and nuclear attraction are independent of spin so A(1)
is identical to the corresponding operator of the restricted case. The electrons
of o spin see a coulomb potential J3 and an exchange potential — K coming
from each of the N electrons of « spin occupying the orbitals ¥/, plus a cou-
lomb potential J8 coming from each of the N¥ = N — N* electrons of §
spin occupying the orbitals . The sum over the N* orbitals /% in the above
equation formally includes the interaction of an « electron with itself. How-
ever, since

[Ja1) — Ki)]yax1) =0 (3.317)

this self-interaction is eliminated. The corresponding Fock operator for
electrons of § spin is

NB Ne
Sy = h(1) + ) [J41) - KE(D)] + ) Ja() (3.318)

The unrestricted coulomb and exchange operators are defined in analogy
to our previous definitions (3.124) and (3.125) of the restricted coulomb and
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exchange operators. That is,

JH1) = [dry yS QIR (3.319)

Ky = | [dr, y2@pri w(z)] 8)

- f dr; 'ﬁﬁ'(Z)rrz‘%nﬁ:(z)] VALY (3.320)

The definitions of J® and K? are strictly analogous to the above.

From the definitions (3.316) and (3.318) of the two Fock operators f*
and f?, we can see that the two integro-differential eigenvalue equations
(3.312) and (3.313) are coupled and cannot be solved independently. That
is, /* depends on the occupied B orbitals, /2, through J4, and f# depends on
the occupied a orbitals, Y%, through J% The two equations must thus be
solved by a simultaneous iterative process.

Exercise 3.33 Rather than use the simple technique of writing down
f4(1) by inspection of the possible interactions, as we have done above, use
expression (3.314) for f%(1) and explicitly integrate over spin and carry
through the algebra, as was done in Subsection 3.4.1 for the restricted closed-
shell case, to derive

Ne N6
S =h1) + ) [Ji1) - Ki)] + Y. J4()

Now that we have derived the unrestricted Hartree-Fock equations,
we can write down expressions for the unrestricted orbital energies, total
unrestricted energy, etc. First, we need to define a few terms. The kinetic
energy and nuclear attraction of an electron in one of the unrestricted orbitals
¥? or Y is the expectation value

K = (Wilhlw) or k= (Wi|hlyd) (3.321)
The Coulomb interaction of an electron in ¥/} with one in Y4 is
T =I5 = WiI8s) = WhlIefvd) = s |vivh) (3.322)

The corresponding coulomb interactions between electrons of the same
spin are

Ji = WIS = s = Wivi | wivs) (3.323)
and

I = eI = WhIEA) = Wil |iyh) (3.324)
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The exchange interactions between electrons of parallel spin are

K3 = WiKwD) = WilKHw)) = Wiy (3329)
and

Kif = WIIKfll) = WIIKEWS) = Wiwg|vivd) (3326
There is, of course, no exchange interaction between electrons of opposite
spin.

The total unrestricted electronic energy can now be written down just
by considering all the contributing energy terms,

N« N8 1 N* Ne | N8 N6 N= N8
Eo=Yhut+ X hut ;X 0UG- KD+ YU - KO+ LTI
(3.37)

The summations with upper limit N* are summations over the occupied
orbitals % or ;. A similar convention holds for orbitals occupied by electron
of B spin. The factor of § in the third and fourth terms eliminates the double
counting in the free summation. The self-interaction disappears since
J@ — K& = JBB _ K88 — 0 as Egs. (3.323) to (3.326) verify.

Exercise 3.34 The unrestricted doublet ground state of the Li atom is
|¥o) =J WPh253)). Show that the energy of this state is E,=
T1 + K+ 5+ U - KR+ IR+ Y

Exercise 3.35 The unrestricted orbital energies are & = (y§|f*|y}) and
ef = (¥ f?|y?). Show that these are given by

Ne N#
g=hi+) S -KDH+) J?

N8 Ne

e =hi+ U - KD+ 2 I

Derivc: an expression for E, in terms of the orbital energies and the coulomb
and e).change energies.

3.8.2 Introduction of a Basis: The Pople-Nesbet Equations

To solve the unrestricted Hartree-Fock equations (3.312) and (3.313), we
need to introduce a basis set and convert these integro differential equations
to matrix equations,'? just as we did when deriving Roothaan’s equations.
We thus introduce our set of basis functions {¢,|u=1,2,...,K} and
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expand the unrestricted molecular orbitals in this basis,

K

e = zl Cio, i=1,2,...,K (3.328)
n=
K

Yl = z Cﬁ,-d),, i=12...,K (3.329)
r=1

The two eigenvalue equations (3.312) and (3.313) guarantee that the sets of
eigenfunctions {y?} and {y#} individually form orthonormal sets. There is
no reason, however, that a member of the set {{)f} need be orthogonal to a
member of the set {i/#}. Even though the two sets of spatial orbitals overlap
with each other, the set of 2K spin orbitals {;} will form an orthonormal set,
either from spatial orthogonality (xa and ff case) or spin orthogonality
(ap case).

Substituting the expansion (3.328) for the orbitals ¥/} into the « Hartree-
Fock equation (3.312) gives

Y CLf o) =& Y C4o (1) (3.330)

If we multiply this equation by ¢%(1) and integrate over the spatial co-
ordinates of electron-one, we get

Y F,Cy=6YS,Cy j=12...,K (3.331)

where S is the overlap matrix (c.f. Eq. (3.136)) and F* is the matrix repre-
sentation of f* in the basis {¢,},

Fy, = [dr, 200f51)6,(1) (3.332)

Identical results can be obtained for # orbitals. The algebraic equations in
(3.331) and the corresponding equations for g orbitals can be combined into
the two matrix equations,

F*C* = SC%" (3.333)
FPC* = SC’s* (3.334)

These twer equations are the unrestricted generalizations of the restricted
Roothaan equations (c.f. Eq. (3.139)) and were first given by Pople and Nes-
bet. The matrices &* and &f are diagonal matrices of orbital energies (c.f. Eq.
(3.141)). The K x K square matrices C*and C* have as columns the expansion
coefficients for ¢ and y/f (c.f. Eq. (3.140)). These equations can be solved in
a manner similar to the way Roothaan’s equations are solved, except that,
since F* and F* depend on both C* and C¥, the two matrix eigenvalue prob-
lems must be solved simultaneously. We will return to the solution of these
equations after we have described unrestricted density matrices and the
explicit form of F%, and F%,.
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3.8.3 Unrestricted Density Matrices

We continue here with the generalization of our previous results for restricted
closed-shell wave functions. If an electron is described by the molecular
orbital y(r), then the probability of finding that electron in a volume element
dr at r is |y3(r)|? dr. The probability distribution function (charge density)
is [4(r)|%. If we have N* electrons of « spin, then the total charge density
contributed by these electrons is

-
) = X, witn)? (3339)

The corresponding charge density contributed by electrons of f# spin is

N8
P =Y. W2 (333

and the total charge density for electrons of either spin is the sum of these

pT(r) = p*(r) + p¥(r) (3.337)
Integrating this equation leads, as expected, to

J' dr pT@®) = N = N* + N* (3.339)

In an unrestricted wave function, electrons of « and g spin have different
spatial distributions (p* # p#), and it is convenient to define a spin density

p*(r) by
p(r) = p(r) — p*(r) (3.339)

From the above definition of the spin density, it is clear that in regions of
space where there is a higher probability of finding an electron of « spin than
there is of finding an electron of f# spin the spin density is positive. Alter-
natively, the spin density is negative in regions of space where electrons of
spin are most prevalent. The individual densities p* and p? are, of course
positive everywhere. The spin density is a convenient way of describing the
distribution of spins in an open-shell system.

Exercise 3.36 Use definitions (3.335) and (3.336) and Eq. (2.254) to show
that the integral over all space of the spin density is 2{%,).

By substituting the basis set expansions (3.328) and (3.329) of the « and
B molecular orbitals into the expressions (3.335) and (3.336) for the « and §
charge densities, one can generate matrix representations (density matrices)
of the « and B charge densities,

N«
pir) =3 Wi’ = X Y PLounel(r) (3.340)
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N8B
Pl =Y Wim[* = X 3 Pho,0)eir) (3.341)

where the density matrix P* for a electrons and the density matrix P# for 8
electrons are defined by

Z 2 (C3) (3.342)

Z 8 (C2.) (3.343)

In addition to these two density matrices, one can, of course, define, in
analogy to our previous definitions, a total density matrix and a spin density
matrix. That is,

PT =P+ P? (3.344)
PS=Pc—PF (3.345)

Exercise 3.37 Carry through the missing steps that led to Egs. (3.340)
to (3.343).

Exercise 3.38 Show that expectation values of spin-independent sums

of one-electron operators Z h(i) are given by

0,) = Z Z PL(v|h|y)

for any unrestricted single determinant.

Exercise 3.39 Consider the following spin-dependent operator which
is a sum of one-electron operators,

p°=2 i o(r; — R)s, (i)
i=1

Use the rules for evaluating matrix elements, given in Chapter 2, to show
that the expectation value of p° for any unrestricted single determinant is
{P%) = P’(R) = tr(P°A)
where
= ¢ (R)¢.(R)

This matrix element is important in the theory of the Fermi contact contri-
bution to ESR and NMR coupling constants.




214 MODERN QUANTUM CHEMISTRY

Having defined the unrestricted density matrices P*, P?, P7, and P° we
will now use these definitions to give explicit form to the unrestricted Fock
matrices F* and F?

3.8.4 Expression for the Fock Matrices

To obtain expressions for the elements of the matrices F* and F#, we simply
take matrix elements in the basis {¢,} of the two Fock operators f* (Eq.
(3.316)) and f* (Eq. (3.318)), and use expressions (3.322) to (3.326) for matrix
elements of the coulomb and exchange operators. That is,

Fi, = [dr, 20/ 01)
= H3* + Y [0, V202 — G0210200] + T (6,0, ¥0h) (3349

Fb, = [dr, g2 %1)6,()
= H'* + Y [(6,0.10800) — (0,08]650)] + ¥ (4,0, |v0) (3347

To continue, we substitute the basis set expansions of /% and ¥4 to get
N« N8
Fi=Hy*+3 Y Y CoalCoa*[(wv| o) — (pa]|av)] + 3 Y. 3. ChlCod *(uv|od)
A o a A o a
= H:‘:”+Z Z Pio[(uv]|od)—(ui]ov)] +Z Y. Pio(pv|od)

= H°°‘°+Z Z Pl (uv|a4)— Ps,(ud|ov) (3.348)

N«
Fi,=H Z‘C”+; ) Z Cha(CEI* (v | 0A) — (A | ov)] +; Y Y CialCaa)*(uv|ad)
= HZ‘:'°+Z Z P4, [(uv|od)—(pd|ov)] +§: Y. Pio(uv|od)

core + 2 2 Pla (“vla},) - P8 (ﬂllGV) (3349)

If one compares these expressions with the corresponding restricted closed-
shell expression (3.154), one sees that the coulomb term is identical and
depends on the total density matrix. The difference is only that here one has
separate representations of the a and f density matrices rather than, as in
the closed-shell case,

=Pl =4PT, (3.350)

The coupling of the two sets of equations is made explicit in the above
expressions, i.e., F* depends on P? (through the total density matrix P?) and
F? similarly depends on P*.
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3.8.5 Solution of the Unrestricted SCF Equations

The procedure for solving the unrestricted SCF equations is essentially
identical to that previously described for solving the Roothaan equations.
An initial guess is required for the two density matrices P*and P# and hence
P’. An obvious choice is to set these matrices to zero and use H™™ as an
initial guess to both F* and F®. If this procedure is followed, the first iteration
will produce identical orbitals for « and § spin, i.e., a restricted solution. If,
however, N* # N®, then all subsequent iterations will have P* # P# and an
unrestricted solution will result.

Given approximations to P* and P, at each step of the iteration, we can
form F* and F?, solve the two generalized matrix eigenvalue problems

F*C* = SC*" (3.351)
F/C? = SCPe (3.352)

for C* and C”, and then form new approximations to P* and P%. Because of
the coupling of the two equations, one cannot obtain a self-consistent solu-
tion to the « equations without at the same time obtaining a self-consistent
solution to the f equations, although at any one iteration step the two
matrix eigenvalue problems (3.351) and (3.352) can be solved independently;
the coupling is in the formation of the Fock matrices. Solving the matrix
eigenvalue problem will involve knowing a transformation matrix X to an
orthonormal basis set, forming F* = X'F*X, diagonalizing F* to get C*,
and then forming C* = XC?, etc,, just as in the restricted closed-shell case.

Exercise 3.40 Substitute the basis set expansion of the unrestricted
molecular orbitals into Eq. (3.327) for the electronic energy E, to show that

1
Eo =5 ¥ X [PLH" + PLFL + PLFL
v

Before going on to describe sample unrestricted calculations, an impor-
tant point should be noted about solutions to the Pople-Nesbet equations
for the special case N* = N, i.e., for the case where a molecule would nor-
mally be described by a restricted closed-shell wave function. For this case,
there exists the possibility of two independent solutions to the Pople-Nesbet
equations. The first solution is a restricted solution. If P* = P# = 4P, then
F* = F/ = F and the Pople-Nesbet equations degenerate to the Roothaan
equations. When N* = N, q restricted solution to the Roothaan equations is
a solution to the unrestricted Pople-Nesbet equations. This restricted solution
always exists and necessarily results if an initial guess P* = P is used. For
N* = N’ however, in addition to the restricted solution there may also exist
a second unrestricted solution of lower energy. The restricted solution con-
strains the density of « electrons to equal the density of § electrons, but under
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certain conditions (which we shall consider in the last subsection of this
chapter) relaxing this constraint will result in an unrestricted solution of
lower energy for which P* is not equal to P?. When N* = N#, under certain
conditions there exists a second solution, the unrestricted solution to the Pople-
Nesbet equations. In seeking this second solution, it is imperative that an
initial guess P* # P? be used or the equations will necessarily yield the
restricted solution. Even if an unrestricted initial guess is used, there is still
the possibility that iteration will lead to the restricted solution. When two
solutions exist, the initial guess will strongly determine to which solution
the iterations lead.

One normally uses unrestricted wave functions to describe open-shell
states of molecules for which N* # N#, and the above considerations are
not of concern. When, however, one uses unrestricted wave functions as a
solution to the dissociation problem, as we shall subsequently do, the
possibility of two solutions is of supreme importance.

3.8.6 IlNlustrative Unrestricted Calculations

An interesting example of the use of unrestricted wave functions occurs for
the methyl radical CH,. This molecule has D,, symmetry, i.e., it is planar
with bond angles of 120°. The CH internuclear distance is taken to be
2.039 a.u. The simplest description of the electronic structure of this radical
is a restricted Hartree-Fock description, shown in Fig. 3.13. The unpaired

Figure 3.13 Restricted Hartree-Fock description of the planar
methyl radical.
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clectron is in an open-shell # orbital, which in a minimal basis description
would be a pure 2p orbital on carbon. The remaining electrons are paired in
o orbitals. In this restricted Hartree-Fock description, the spin density p*(r)
is everywhere positive, except in the plane of the molecule where it is zero
because of the node in the = orbital. Because all o electrons are paired, the

spin density is just
po(r) = |y (3.353)

where . is the = molecular orbital containing the unpaired electron.

The above description, while simple, is not in agreement with experi-
mental results. In an electron spin resonance (ESR) experiment on the methyl
radical, measurements were made of a™ and 4€, the coupling constants for
the hydrogen and carbon nuclei. These ESR coupling constants are a direct
measure of the spin densities at the position of the respective nuclei,

a*(Gauss) = 15920°R ) (3.354)
a%(Gauss) = 400.3p5R.) (3.355)

The experimental measurements of a¥ and a° give not only the magnitude
but also the sign of the spin density. It is found that the spin density at the
H nucleus is negative, and the spin density at the C nucleus is positive.
Unfortunately, the restricted Hartree-Fock description predicts the coupling
constants a®! and a€ to be both zero. If the molecule were vibrating so that
part of the time the molecule had a bent C,, geometry, then the restricted
description would allow nonzero spin densities at the nuclei. But these spin
densities and the associated coupling constants would always be positive.
Thus the negative spin density at the positions of the hydrogen nuclei cannot
be explained by a restricted Hartree-Fock description.

The simplest way of obtaining the correct qualitative result is to use an
unrestricted Hartree-Fock description. The electrons of Fig. 3.13 that are
paired in a o orbital have different interactions with the unpaired electron,
ie, the electrons of a spin have a coulomb and exchange interaction with
the unpaired electron while the electrons of § spin have only a coulomb
interaction. There is thus good reason why the a and B electrons of the
sigma system should have different energies and occupy different spatial
orbitals. If, indeed, one does relax the constraint of paired electrons, by using
the Pople-Nesbet equations, the unrestricted solution shown in Fig. 3.14 is
found. This unrestricted wave function does not have the o electrons paired
and as such there will be net nonzero spin density in the sigma system, in
particular, at the positions of the carbon and hydrogen nuclei. Unrestricted
calculations (Table 3.26), show that the spin density is positive at the carbon
nucleus and negative at the hydrogen nuclei, as also shown in the figure.
This result is commonly explained by the use of two rules: an “intraatomic
Hund’s rule”, which postulates that electrons tend to have parallel spins on
the same atom, and a rule which states that the spins of electrons in orbitals
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-y ——
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i {—“—— ‘ } i Figure 3.14 Unrestricted Hartree-Fock
—— —t description of the planar methyl radical.

Table 3.26 Unrestricted SCF spin densities and hyperfine
coupling constants for the methyl radical using the standard
basis sets. A value of (¥2) = 0.75 corresponds to a pure
doublet

Spin density Coupling constant
(a.u) (Gauss)

Basis set C H a at (&
STO-3G +0.2480 ~0.0340 +99.3 —54.2 0.7652
4-31G +0.2343 —0.0339 +93.8 —540 0.7622
6-31G* +0.1989 —0.0303 +79.6 —483 0.7618
6-31G** +0.1960 —0.0296 +78.5 -471 0.7614
Experiment +38.3 -230 0.75

that overlap to form a chemical bond tend to be antiparallel. Negative spin
density in the vicinity of the hydrogen nuclei results from application of these
two rules.

Table 3.26 shows the results of ab initio calculations of the CH 5 hyperfine
coupling constants. The correct qualitative results are obtained—a positive
spin density at the carbon nucleus and a negative spin density at the hydrogen
nuclei. The magnitudes of the spin densities are too large, however. They
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are in error by about a factor of 2 for the 6-31G** basis set. Without per-
forming more extensive calculations, it is difficult to know whether the source
of the error is in the basis sets or in the neglect of correlation. The standard
basis sets we are using were derived primarily for the description of valence
properties, and they may not be adequate near a nucleus. In particular,
Gaussian functions are known to be poor at their origin. Also, the basis
sets that we are using contain only a single function for the inner-shell of
carbon.

The table also contains expectation values of #2. One of the deficiencies
of an unrestricted calculation is that it does not produce a pure spin state.
The ground state of the methyl radical is a doublet with (¥ ?) = S(S + 1) =1.
The unrestricted calculations produce a doublet wave function, which is
contaminated with small amounts of a quartet, sextet, etc, as discussed
in Section 2.5. The expectation values of &2 are close to the correct value of
1, showing that these contaminants are not large.

Exercise 3.41 Assume the unrestricted Hartree-Fock (UHF) calcula-
tions of Table 3.26 contain only the leading quartet contaminant. That is,

l'PU].“: = clzl'P + C24l'P

If the percent contamination is defined as 100c2/(c? + c3), calculate the per-
cent contamination of each of the four calculations from the quoted value
of ().

We have previously used Koopmans’ theorem to calculate the first two
ionization potentials of N,. As we saw at that time, calculations at the
Hartree-Fock limit, or with our best (6-31G*) basis set, incorrectly predict
the %I, state of N3 to be lower in energy than 2X_ state of N;. That is,
the highest occupied orbital of N, is calculated to be the 1x, orbital rather
than the 3o, orbital. There are two reasons why Koopmans’ theorem might
make the wrong prediction: neglect of correlation or neglect of relaxation.
We can test the second alternative by explicitly performing Hartree-Fock
calculations on the 2T1, and 2T state of N5 . Koopmans’ theorem calculations
assume the orbitals of these two states to be identical to those of ground
state N,. By performing separate unrestricted calculations on these two
doublet states of N5, we will be allowing the orbitals to relax to their optimum
form. The ionization potentials can then be obtained by subtracting the total
restricted energy of the N, ground state from the total unrestricted energy
of each of the N; ions.

Table 3.27 shows the results of 6-31G* calculations on the 'Z; state of
N; and the 2=, and ’II, states of N3 . To compare with experimental vertical
ionization potentials, all the calculations were performed at the equilibrium
geometry (R = 2.074a.u.) of groundstate N,. These calculationsstill predict
that the 1, state has a lower energy than the 2, state in disagreement with




220 MODERN QUANTUM CHEMISTRY

Table 3.27 SCF calculations on the ground
state of N, (restricted) and two states of N
(unrestricted) with a 6-31G* basis set. Vertical
(R, = 2.074 a.u.) ionization potentials are
shown, and experimental values are in

parenthesis
Total Energy Ionization Potential
State (a.u.) (a.u.)
N,('Z) — 108.94235
N3 (31,) —108.37855 0.564 (0.624)
N3(2Z,) —108.36597 0.576 (0.573)

experiment. This is therefore an indication that the qualitative disagreement
of experiment with Koopmans’ theorem ionization potentials for N, is a
result of the lack of inclusion of correlation effects. Later, inclusion of
correlation effects will verify this.

Our final example of ab initio unrestricted calculations is O,. This
molecule has unpaired spins and is paramagnetic. The first brilliant success
of molecular orbital theory was the explanation of why O,, with an even

-0.4 |- o orbitais B orbitals

20,

-14 |

-16 | 20y

Orbital Energy (a.u.)

2071 } e 1%
-20.73 |-
-20.78 |- Figure 3.15 Unrestricted occupied

o, molecular orbitals of O,(*Z,;, R =
2077 — oy 2.281 a.u.) with a 6-31G* basis set.




THE HARTREE-FOCK APPROXIMATION 221

number of electrons, does not have all its electrons paired. The molecular
orbitals of homonuclear diatomics are ordered 10,, 10,, 20,, 20,, (30, 17,)
In,, 30,. The last two electrons of O, go into the doubly degenerate anti-
bonding 1z, orbital. By Hund’s rule, these two electrons go into separate
Im, orbitals with their spins parallel so as to enjoy the negative exchange
interaction. This, therefore, leads to a final 3}:‘,‘ state. The occupied orbitals
of an unrestricted 6-31G* calculation on O,, for a bond length of 2.281 a.u.,
are shown in Fig. 3.15. The “open-shell” alpha electrons in the 1z, orbital
“push” down (stabilize) the « orbitals relative to the f orbitals because of
exchange interactions that are present only between electrons of the same
spin. In a restricted description, all but the 1=, orbitals would be constrained
to be paired. Note how the order of the 1z, and 30, orbitals are reversed
for electrons of « and B spin.

To complete our discussion of unrestricted Hartree-Fock theory, we will
use our minimal basis H, model to investigate the description of bond
dissociation by unrestricted wave functions.

3.8.7 The Dissociation Problem and Its Unrestricted Solution

The unrestricted wave function is normally used to describe open-shell
states—doublets, triplets, etc., as in the examples of the last subsection. Under
certain circumstances, however, it may be appropriate to use an unrestricted
wave function to describe states that are normally thought of as closed-shell
singlets. For the ground state of a moleculelike H,, the restricted formulation,
with electrons paired, is the usual description. As we shall shortly see, it is
also the only appropriate Hartree-Fock description under certain conditions.
At very large bond lengths, however, one is really trying to describe two
individual hydrogen atoms. A proper description will have one electron on
one H atom and the other electron on the other H atom, i.e., the two electrons
will have quite different spatial distributions. They should not have identical
spatial distributions as is implied by a restricted wave function, which places
both electrons in the same spatial orbital. It would thus appear that at
equilibrium distances we want a restricted wave function, but at large bond
lengths we want an unrestricted wave function. In a sense, we will be able
to have our cake and eat it too. As was discussed in the previous subsection,
there may exist two solutions to the unrestricted equations of Pople and
Nesbet when N* = N*, The restricted solution of Roothaan’s equations is
necessarily a solution to the Pople-Nesbet equations. It only remains to
discover whether there is a second truly unrestricted solution that is lower
in energy than the restricted solution. We shall find that for normal geom-
etries there is not always an unrestricted solution. If, however, we stretch
a bond which cleaves homolytically, like the bond in H, (H, — H + H)
but unlike the bond in HeH* (HeH* — He + H™), then an unrestricted
solution will always exist at large bond lengths. The unrestricted solution
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accomodates the unpairing of electrons inherent in the breaking of the bond.
To see this explicitly, we will investigate wave functions for our minimal basis
model of H,.

We could numerically solve the Pople-Nesbet equations for minimal
basis STO-3G H,, just as we have solved them for CH;, N3, and O,. An
appropriate unrestricted initial guess would be required if the iterations were
to lead to an unrestricted solution rather than to the restricted solution. The
transition from a restricted to an unrestricted wave function will be more
transparent, however, if, rather than obtain a numerical solution to the
Pople-Nesbet matrix equations, we formulate the problem in an analytical
fashion.

The restricted molecular orbitals of minimal basis H, are symmetry
determined and given by

¥i=[2(1 + $;2)]7 4y + ¢2) (3.356)
Y, = [2(1 - SIZ)]_I/Z(d)l - ¢3) (3.357)

Since the minimal basis model has only two basis functions with coefficients
that can be varied and since molecular orbitals are constrained to be nor-
malized, the minimal basis model has, in the general case, only one degree
of freedom. An unrestricted solution, unlike the restricted solution, is not
symmetry determined and a convenient way of incorporating this one degree
of freedom into unrestricted calculations is to write the unrestricted occupied
molecular orbitals ¥4 and y# as linear combinations of the restricted sym-
metry determined orbitals y, and ¥,, as follows:

Yq =cosOy; + sinOy, (3.358)

Y8 = cosOy, — sin0y, (3.359)
The single degree of freedom here is in the angle 0. It is sufficient to consider
values of 0 between 0° and 45°. The value 0 = 0 corresponds to the re-

stricted solution Y% =% =, and nonzero values of 0 correspond to
unrestricted solutions % # 4. The unrestricted virtual orbitals are given by

az = _Sin 0!,01 + cos 0!,02 (3.360)
Y4 = sinOy, + cos Oy, (3.361)

Exercise 3.42 Show that the set of a orbitals {y¢, w5} and the set of
B orbitals {y§, w4} form separate orthonormal sets.

If we substitute the basis set expansions (3.356) and (3.357) into the
previous four equations, we will obtain basis set expansions for the un-
restricted molecular orbitals. The occupied molecular orbitals, which are the
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only ones we need consider from now on, are given by
Yi=c19, + 20, (3.362)
Wi = c20; + 19, (3.363)
where
c; =[2(1 + 8,5)) Y2 cosO + [2(1 — S;,)] V*sinf  (3.364)
c2 =[2(1 + S;12)] Y2 cos® — [2(1 — S;5)] 2sinf  (3.365)

By allowing ¥, to mix with ¥, in the definition of the unrestricted
occupied orbitals (Eqgs. (3.358) and (3.359)), we allow the weights of ¢, and
¢, in the basis set expansions of % and ¥ to vary as shown by Egs. (3.362)
and (3.363). If 6 = 0, the wave function is just the restricted wave function
with ¢; = ¢, = [2(1 + S,,)] V2. As 0 increases from zero, ¢, gets larger and
¢, gets smaller or, equivalently, Y acquires a larger admixture of ¢, and
¥4 acquires a larger admixture of ¢,. If S,, = 0 as is appropriate for large
internuclear distances, then in the limit of 8 = 45° we havec, = 1, ¢, = 0,and

[, S~

vi= ¢1} §=45°, S,=0 (3.366)
¥i = ¢,

This is the result we desire for two separate H atoms—an electron with o

spin in ¢, and an electron with § spin in ¢,.

We thus characterize molecular orbitals for minimal basis H, by the
single parameter 6. At one extreme, 6 = 0 corresponds to the restricted solu-
tion where the occupied molecular orbital is an equal mixture of ¢, and ¢,.
At the other extreme, 8 = 45° corresponds to an unrestricted solution for
isolated hydrogen atoms. Intermediate value of 6 correspond to unrestricted
solutions where /§ is mainly ¢, and ¥4 is mainly ¢,. Figure 3.16 gives a
qualitative picture of the unrestricted molecular orbitals of H, as a function
of §. While we have derived this picture using the minimal basis, the figure
is qualitatively correct for H, with any basis set.

We have seen that for the ground state of a closed-shell molecule like
H, it appears possible to define unrestricted wave functions which have the
qualitatively correct behavior that we expect for the dissociation process.
It remains to relate these unrestricted wave functions to solutions of the
Hartree-Fock equations. If we solve the Pople-Nesbet equations, will a non-
zero value of 8 be obtained? To investigate this question, we need to deter-
mine the energy as a function of 6.

The electronic energy of an unrestricted single determinant wave func-
tion for H,,

[¥o> = WALW4(2)) (3.367)




224 MODERN QUANTUM CHEMISTRY
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v, v,

Figure 3.16 Qualitative behavior of unrestricted molecular orbitals ¥ and ¥4 for H, as a
function of 6.

is just the kinetic energy and nuclear attraction of each electron, plus the
coulomb repulsion between the two electrons. That is,

Eo = (¥o|#|¥o> = ht, + Wi, + I
= (WilhlyD) + WAlAwd) + Wiy [vivd) (3.368)
Substituting the expansions (3.358) and (3.359) into this expression, we can

write the electronic energy, as a function of 6, in terms of molecular integrals
of the restricted problem

Eo(e) = 20082 Ohll + 2Sin2 0h22 + COS‘ 0.,11
+ sin*6J,, + 2s5in? @ cos? 6(J,, — 2K ,) (3.369)

If 6 = 0, the unrestricted energy just reduces to the restricted energy
Eo(O) = 2h11 + Jll (3.370]
The first derivative of the unrestricted energy with respect to 0 is

dE(0)/d6 = 4 cos 0 sin [ hy, — hy, + sin?8J ,, — cos?0J
+(cos?8 —sin®B)(J 1, — 2K,12)]  (3371)

To find the values of 6 which solve the Pople-Nesbet equations, ie., to
find the values of & which make the unrestricted energy stationary, we set
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the first derivative of the unrestricted energy to zero,
dEy(0)/d0 = AB =10 (3.372)

where
A =4cosfsinf (3.373)

and
B=hy,—h,, +sin?0J,,—cos?0J,, +(cos? 0 —sin? O)(J ,,—2K,,) (3.374)

There are thus two ways the energy could be stationary:

1. A = 0. This is the restricted solution. The condition is satisfied if 8 = 0.
2. B=0. This is the unrestricted solution. The condition is satisfied and
there exists an unrestricted wave function only if there is a solution to:

cos? @ = n (3.375)
where
n=(hy2—hy1+J22—J12+2K,3)/(J11 + 22— 2J,,+4K,,) (3.376)

This last equation is obtained by setting B of Equation (3.374) to zero. This
equation has a solution only if the internuclear distance and basis functions,
and hence the molecular integrals h, , h,,, etc., are such that » lies between
zero and one, ie., 0 <n < 1.

Exercise 3.43 Use the molecular integrals given in Appendix D to show
that no unrestricted solution exists for minimal basis STO-3G H, at R =
1.4a.u. Repeat the calculationfor R = 4.0a.u. andshow that an unrestricted
solution exists with 8 = 39.5°. Remember that ¢, = h,, + J,, and &, =
hys + 201, — Ky .

To proceed with the analysis let us investigate the nature of the restricted
solution (6 = 0) by evaluating the second derivative of the energy (at the
restricted solution),

d’Eo(0)/d60%Jp-0 = EG(0) = 4(hy; — hyy — Jyy + J 15 — 2K )
=4(c;, — ¢, — Jy; — Ky)) (3.377)
The nature of the restricted solution is determined by this second derivative.
If E5(0) > 0, it is an energy minimum. If E3(0) < 0, it is an energy maximum.
If E5(0) = 0, i.e., if
hzz - hn = Ju - le + 2K12 (3‘378)
then the restricted solution is a saddle point. Substituting this last saddle

point conditioninto Eq. (3.376), we find thaty = 1atthe saddle point. Using
the molecular integrals of Appendix D we can investigate the behavior of
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()
a) Small R
-
° 0
Eo(®
b) Large R
Figure 3.17 Qualitative behavior of the
unrestricted energy of H, as a function
- of 6 for small and large internuclear
° 8 distances: a) small R; b) large R.

E4(0) and n as a function of bond length. At short bond lengths E(0) >0
and n > 1. As the bond length increases both E3(0) and »n decrease mono-
tonically, until they reach a limit at R = oo of E§(0) = —1/2 (¢,¢,|0:1¢1)
and n = 1/2. At a transition point, which occurs in the vicinity of R = 2.3 a.u,
the second derivative E(0) becomes negative and simultaneously n becomes
less than 1. The behavior of the solutions is therefore as follows: At short
bond lengths n > 1, the restricted solution is a true minimum, and no un-
restricted solution exists. On increasing the bond length the value of #
decreases until, at a distance of approximately 2.3 a.u., n becomes 1 and a
saddle point occurs in the energy. This transition point defines the onset of
an unrestricted solution. At a bond length beyond this, the restricted solu-
tion (6 = 0) is actually a maximum in the energy as shown in Fig. 3.17. When
an unrestricted solution exists (n < 1), the value of n can be equated to
cos? 0. As the bond length becomes larger and larger, 6 gives to the limit of
45° appropriate to isolated hydrogen atoms. A potential curve for STO-3G
H, showing the two solutions is shown in Fig. 3.18. The unrestricted energy
goes smoothly to the limit of two hydrogen atoms calculated with the same
basis set, i.e., 2(¢,|h|¢,). The restricted energy goes to a limit 1/2(¢, ¢, |$,¢,)
above the right result. Also shown in Fig. 3.18 is the essentially exact result
of Kolos and Wolniewicz.> The hydrogen atom energies used in the figure
(—0.4666 and —0.5) are obtained with the basis sets employed in the respec-
tive methods. Thus, both curves go to zero at large R. The corresponding
curves for a 6-31G** basis set are shown in Fig. 3.19.

The “correct” dissociation of H,, which we have obtained by using an
unrestricted wave function, is not free of faults. The unrestricted wave
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function is not a pure singlet as one would like it to be. The energy goes to
the correct limit but the total wave function does not, as we shall now see.
In the limit R — oo, the molecular orbitals become Y% = ¢, and Y4 = ¢,
and the unrestricted single determinant |¥,) of Eq. (3.367) becomes

timit [¥o) = [¢4(1)6:(2)) (337)

This, however, is not the correct form for a singlet wave function in which
electrons occupy different spatial orbitals ¢, and ¢,. In analogy to Eq.
(2.260), the singlet wave function should be

Limit [@0> = 271[|$1(1)h2(D> + [$2(1)h4(2)] (3.380)

The orbitals are correct but the total wave function is not. An alternative
way of looking at this problem is obtained by substituting the expansions
(3.358) and (3.359) for the unrestricted molecular orbitals into the single
determinant |¥,) and expanding the determinant

I‘Po> = qulqu) = cos? 9"/’1'7’1) — sin’® 0,'/’2'?2)
—(2)'2 cos @ sin9[|l//1|/_/2) - |'/’2'/_’1>]/(2)1/2

= cos? 9"/’1'7’1) — sin? 9"/’2'7’2)
—(2)"/2 cos 0 sin 6|*¥3) (3.381)

Here, |*¥1) is the singly excited triplet configuration defined in Eq. (2.261).
The closed-shell determinants |y,¥,)> and |y,,) are, of course, singlets.
An unrestricted single determinant for the ground state of H, is thus not a
pure singlet but is contaminated by a triplet. The mixing of the doubly
excited determinant |y ,J,) with [y,,) allows the dissociation to go to
the correct limit, but the triplet contaminant is required if the final wave
function is to be a single determinant. As R — oo the triplet contamination
increases until it represents 509, of the wave function,

limit [¥o> = 12[[Y 101> — W2P2> - @PED] (38

Although the correct dissociation energy is obtained using an unrestricted
wave function, the poor wave function will limit the desirability of using,
near the dissociation limit, an unrestricted single determinant as a starting
point for configuration interaction or perturbation calculations.

Exercise 3.44 Derive Eq. (3.379) from Eq. (3.382).

We have only discussed the restricted Hartree-Fock dissociation prob-
lem for the minimal basis model of H,. The ideas presented are not limited
to H,, however, and very similar effects will occur for other closed-shell
systems when a bond is stretched. In H,, the onset of unrestricted solutions
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occurs beyond the equilibrium distance but in the general case there may
even be unrestricted solutions at the experimental geometry. By an exten-
sion of our analysis, it is possible to derive general conditions under which
there exists an unrestricted solution lower in energy than the closed-shell
restricted solution (Thouless, 1961).
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